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Abstract
Recommender systems aim to provide suggestions that are both relevant and diverse. Balancing these

measures is challenging, as increased diversity often reduces relevance, lowering user engagement.

Current algorithms combine relevance and diversity into a single objective, but they typically overlook

user interaction with the recommended items. In this paper, we prioritize the user, integrating relevance,

diversity, and user behavior. Our probabilistic user-behavior model assumes users continue engaging with

the system if they find the recommendations relevant but may stop if relevance decreases. Therefore, to

achieve high diversity, recommendations must be both relevant and diverse. We introduce a novel recom-

mendation strategy using a copula function. Extensive evaluations on multiple datasets demonstrate

that our strategy overcomes several state-of-the-art methods. Our implementation is publicly available
1

.
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1. Introduction

Recommender systems are crucial for helping users discover new information and expand their

knowledge base [1, 2, 3]. Even though they generally focus on maximizing relevance, previous

research highlighted how incorporating diversity into recommendations adds significant value

for knowledge exploration [4, 5]; further preventing users from getting trapped in content

"rabbit holes" on platforms like YouTube [6, 7, 8] or Reddit [9]. Current methods balance

relevance and diversity by merging them into a single optimization objective but often ignore

user behavior and interactions with recommended items.

We propose a novel framework prioritizing the user, where the interaction with the algorithm

is seen as a knowledge-exploration task, guided by a user-behavior model that accounts for user

preferences and patience in accepting or rejecting recommendations. Our goal is to maximize

the knowledge a user gains, modeled through a diversity measure, and couple it with the user-
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behavior model, thus producing recommendations that are both relevant and diverse . We refer

to this concept as “knowledge exploration via recommendations".
In our framework, relevance governs the termination of exploration, while the overall quality

is measured by diversity. We instantiate our model using two standard notions of diversity,

coverage and pair-wise distances [10, 11, 12]. Finally, we propose a novel recommendation

strategy that combines relevance and diversity by a copula function. We perform an extensive

evaluation of the proposed framework and strategy using five benchmark datasets publicly

available, and show that our strategy outperforms several state-of-the-art competitors.

Notice that the present work is an abbreviated version of the paper accepted to main track of

the KDD2024 conference [13]. Please refer to the latter for more details.

The rest of the paper is structured as follows. Section 2 presents our problem definition and

methodology. In Section 3, we illustrate our recommendation strategy. Results are reported in

Section 4, and finally Section 5 concludes the paper and provides pointers for future extensions.

2. User Model and Problem Formulation

We consider a typical recommendation setting in which we have a set of 𝑚 users 𝒰 and a set

of 𝑛 items ℐ . We also consider a (black-box) function ℛ : 𝒰 × ℐ → R that provides us with a

relevance score ℛ(𝑢, 𝑖), for each user 𝑢 ∈ 𝒰 and item 𝑖 ∈ ℐ .

Item-to-item distance function. Given an item 𝑖 ∈ ℐ , we denote by x𝑖 the vector of users
with 𝑥𝑖𝑢 = 1 if user 𝑢 interacted with item 𝑖, and 0, otherwise. In addition, we consider a set of

categories 𝒞, and we define y𝑖 to be a category vector, for item 𝑖 ∈ ℐ , where 𝑦𝑖𝑐 = 1 if category

𝑐 relates to item 𝑖, and 0 otherwise. Given two items 𝑖, 𝑗 ∈ ℐ , we hence define their distance as

the weighted Jaccard distance

𝑑(𝑖, 𝑗) = 1−
∑︀

𝑤∈𝒲 min{𝑧𝑖𝑤, 𝑧𝑗𝑤}∑︀
𝑤∈𝒲 max{𝑧𝑖𝑤, 𝑧𝑗𝑤}

, (1)

where 𝒲 is either the set of users 𝒰 or the set of categories 𝒞, and accordingly, z𝑖 is the user
vector or the category vector of item 𝑖.

Diversity. Given a set of items 𝒳 ⊆ ℐ , we define the diversity of the set 𝒳 . First, we define its

coverage-based diversity as

div𝐶 (𝒳 ) =
1

|𝒞|

⃦⃦⃦⋁︁
𝑖∈𝒳

y𝑖

⃦⃦⃦
0
, (2)

where ‖ · ‖0 returns the number of non-zero entries of the binary vector

⋁︀
𝑖∈𝒳 y𝑖. It is worth

highlighting that div𝐶 favours larger 𝒳 sizes, and naturally prefers items that individually

provide extensive coverage.

Further, for a set of items 𝒳 ⊆ ℐ with |𝒳 | ≥ 2, we define its distance-based diversity as

div𝐷(𝒳 ) =
1

|𝒳 | − 1

∑︁
𝑖∈𝒳

∑︁
𝑗∈𝒳

𝑑(𝑖, 𝑗), (3)

and we define div𝐷(𝒳 ) = 0, if |𝒳 | < 2. As with div𝐶 , the div𝐷 metric favors larger sets, in

addition to favoring items whose distance is large to each other.



User model. We aim to evaluate the quality of a recommendation algorithm 𝒮 in the context

of the user response to items recommended by 𝒮 . We view the user-algorithm interaction as

a dynamic knowledge-exploration process, that continues as long as the recommended items

are of interest to the user. If the recommended items have low relevance for the user, they may

(stochastically) decide to quit.

To formalize the exploration process, we propose the following user model:

1. The set of items the user interacts with during exploration is denoted by 𝒳 . Initially, 𝒳
is empty.

2. In step 𝑡, the recommendation algorithm 𝒮 generates a list of items L𝑡 for the user to

examine in a specified order.

3. At any point, the user may quit based on two factors: the relevance of the recommended

items and their patience. If the user finds no interesting items in L𝑡 or runs out of patience,

they may end the exploration process.

4. If the user does not quit, they select an item 𝑖 from L𝑡 with a probability depending on

the item’s relevance. The item 𝑖 is added to 𝒳 , and the exploration continues.

5. Upon quitting, the total score achieved by 𝒮 is div(𝒳 ), where div is a diversity function,

either div𝐶 or div𝐷 . This score reflects the diversity of items the user interacted with.

The final number of steps performed by the user is denoted as 𝜅.

Item selection. We now discuss step (4) of our iterative knowledge-exploration user model.

that is, the probability that a user selects an item 𝑖 from L𝑡. We first assume that a user does

not quit the exploration, i.e., that they have enough patience to explore the whole L𝑡 and that

they find at least a relevant item within it (see next paragraph). In that case, the user selects

an item 𝑖 from L𝑡 with probability proportional to the relevance of 𝑖 for that user 𝑢, that is,

𝑝𝑖 =
ℛ(𝑢,𝑖)∑︀

𝑗∈L𝑡
ℛ(𝑢,𝑗) . As noted before, the selected item 𝑖 is added to the set of interacted items 𝒳 .

Quitting exploration. Last, we discuss step (3) in our user model, that is, how we model the

probability that a user quits the exploration process. We assume a user examines the items in

the list L𝑡 sequentially. Upon examining an item 𝑖 ∈ L𝑡, the user decides with probability 𝜂𝑡
to quit the exploration due to worn out at step 𝑡. We refer to this as the weariness probability

(discussed below). If the user does not quit, they decide whether item 𝑖 is interesting to explore.

The latter is decided again stochastically with Bernoulli probability 𝑞𝑖, which is a function of

the relevance score ℛ(𝑢, 𝑖)1
. The examination of the list L𝑡 continues until the user decides

to quit or decides that there is at least one item that is interesting to explore. Therefore, the

probability that the user quits examining the list L𝑡 without identifying any item to explore is

𝑄𝑡 =

|L𝑡|∑︁
𝑗=1

𝜂𝑡(1− 𝜂𝑡)
𝑗−1

𝑗−1∏︁
𝑖=1

(1− 𝑞𝑖). (4)

Finally, the weariness probability 𝜂𝑡 is modeled by resorting to the discrete version of the

Weibull distribution [14, 15], which has been previously used to model web page dwell times

and session lengths in web page navigation [16]:

𝜂𝑡 = 1− 𝑞(𝑡+1)𝛾−𝑡𝛾 , (5)

1

We obtain 𝑞𝑖 by normalizing ℛ(𝑢, 𝑖) into the [0, 1] interval by considering the maximum relevance range.



where 𝑞 = 𝑒−1/𝜆𝛾
, 0 ≤ 𝑞 ≤ 1. For 𝛾 = 1, the weariness probability remains constant, while for

𝛾 > 1, the weariness probability increases over time — modeling the tiredness of the user
2
.

We can use the properties of the Weibull distribution to obtain the expected number of steps

in the exploration process, for the case that all recommended items are maximally relevant, i.e.,

𝑞𝑖 = 1 for all 𝑖 ∈ L𝑡. In this case, 𝑄𝑡 = 𝜂𝑡 for all 𝑡. The overall quitting probability 𝑄𝑇 is then

𝑄𝑇 =
∞∑︁
𝑡=1

𝑞𝑡
𝛾 − 𝑞(𝑡+1)𝛾 . (6)

The expected number of steps E[steps] examined by a user before quitting (or equivalently,

the number of items in 𝒳 ) is hence given by

E[steps] =
∞∑︁
𝑡=1

𝑡
(︁
𝑞𝑡

𝛾 − 𝑞(𝑡+1)𝛾
)︁
. (7)

Khan et al. [17] show that it is bounded by the expectation 𝜇 = 𝜆Γ(1 + 1/𝛾) of the Weibull

distribution in the continuous setting [15] as 𝜇 < E[steps] < 𝜇+1, which provides an algebraic

relationship between the 𝜆 parameter and the admissible range for the expected number of

steps. Note that, if the relevance of the recommended items is less than 1, the right-hand side of

Equation (7) provides an upper bound on the expected number of steps during exploration.

3. Recommendation Strategy

In this section, we present our recommendation strategy for the proposed knowledge-exploration

framework. The core of the problem is to construct a list of recommendationsL𝑡 of size ‖L𝑡‖ = 𝑘
at the 𝑡-th step of exploration, for a given user 𝑢 ∈ 𝒰 . We assume that 𝒳𝑡 is the set of items

that the user has interacted with at step 𝑡, where 𝒳1 = ∅. We define 𝒥𝑡 = ℐ ∖ 𝒳𝑡 to be set of

items that are available for recommendation, that is, all items except the ones that the user has

already interacted with.

For a user 𝑢 and each item in the candidate set 𝑖 ∈ 𝒥𝑡, we consider its relevance score

ℛ𝑖 = ℛ(𝑢, 𝑖) and its marginal diversity

𝒯𝑖 = div(𝒳𝑡 ∪ {𝑖})− div(𝒳𝑡), (8)

with respect to the interaction set 𝒳𝑡, where div ∈ {div𝐷 , div𝐶 }. We denote 𝒯𝑖 = 𝒟𝑖 when the

distance diversity function div𝐷 is used, and 𝒯𝑖 = 𝒞𝑖 when the coverage diversity function

div𝐶 is used. Intuitively, 𝒟𝑖 represents the distance of 𝑖 from all the items in the interaction set

𝒳𝑡, while 𝒞𝑖 represents the additional coverage that 𝑖 provides
3
. Given 𝒫𝑖 ∈ {ℛ𝑖, 𝒯𝑖}, we also

denote the normalization of the score 𝒫 as
̂︀𝒫𝑖 = (𝒫𝑖 − 𝒫min)/(𝒫max − 𝒫min), where 𝒫max

and 𝒫min are the maximum and minimum values of 𝒫 , respectively, over all items in 𝒳𝑡.

2

For 𝛾 < 1, the weariness probability decreases over time.

3

At the beginning of the exploration process (when 𝒳𝑡 = ∅), if 𝒯𝑖 = 𝒟𝑖, the strategy samples a highly relevant item

𝑖𝑟 so that 𝒟𝑖 = 𝑑(𝑖, 𝑖𝑟); if 𝒯𝑖 = 𝒞𝑖, then 𝒞𝑖 = y𝑖, thus picking the item that individually provides the highest

coverage.



Our strategy for constructing the recommendation listL𝑡 is to combine relevance and diversity

into one score. For each item 𝑖 with relevance ℛ𝑖 and diversity 𝒯𝑖, we compute the combined

score 𝒵𝑖 by adopting the Clayton copula function [18]

𝒵𝑖 =
[︀ ̂︀ℛ−𝛼

𝑖 + ̂︀𝒯 −𝛼
𝑖 − 1

]︀−1/𝛼
, (9)

where 𝛼 > 0 is a regularization parameter. The list L𝑡 is then formed by selecting the top-𝑘
items from 𝒥𝑡 according to 𝒵𝑖.

We refer to this strategy as explore. When the distance diversity function is used we refer

to it as explore-D , and when coverage diversity is used we refer to it as explore-C .

4. Experiments

In this section, we assess the effectiveness of our strategy, either explore-D or explore-C , in

balancing accuracy and diversity. We also evaluate it against several state-of-the-art competitors

within the proposed knowledge-exploration framework.

Datasets and Competitors. We use the following five benchmark datasets, freely avail-

able online: Movielens-1M4
[19], Coat5

[20], KuaiRec-2.06
[21], Netflix-Prize7

[22], and

Yahoo-R28
. We evaluate our recommendation algorithm, explore, against several state-of-art

competing strategies, namely: Relevance, a straightforward baseline which recommends the 𝑘
most relevant items, MMR [11], DUM [10], DPP [12], and DGREC [23].

Setting. To evaluate the performance of the examined recommendation strategies, we divide

user interactions into a training and a test set, following an 80-20% split ratio. When evaluating

the accuracy, we only focus on the recommendation list generated in the initial exploration

step, since it represents a lower bound of the system’s overall accuracy. Regarding diversity

instead, we consider the complete set of recommendation lists produced across all exploration

steps. To calculate the relevance score ℛ(𝑢, 𝑖), we employ a black-box model in the form of a

neural network based on matrix factorization [24]. For explore, we use a value of 𝛼 = 0.5
in the Clayton copula. We keep the length of the recommendation list fixed at 10, and vary

the expected number of steps, E[steps], in the range of [5, 10, 20]. To assess recommendation

quality, we use standard metrics: Hit-Ratio (HR), Precision, and Recall. Our experimental results

are the average of 20 independent trials.

Results. We assess the performance of all our strategies in terms of recommendation quality

and diversity. Figure 1 displays the scores for Recall@10 (on the 𝑥-axis) and diversity (on the

𝑦-axis) across all five datasets, either in terms of coverage (top-row) or distance (bottom-row).

Our method, explore-C , clearly outperforms the other strategies, achieving a substantially

higher diversity score while still delivering relevant recommendations. Similar considerations

can be made for the distance-based variant, explore-D . Other results are in the Appendix.

4
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Figure 1: Trade-off between div
𝐶

(top) and div
𝐷

(bottom), and Recall@10, respectively, across
all the datasets considered. The 𝑥-axis represents recommendation quality, while the 𝑦-axis
indicates the diversity score.

5. Conclusion and Future Work

In this study, we addressed recommendation diversity by introducing a user-behavior model

where relevance drives engagement. We developed a recommendation strategy that optimizes

the delivery of diverse knowledge based on user behavior. Our experimental analysis confirms

the effectiveness of this approach, though it remains open to further enhancements. First, the

behavioral model can be refined to include more sophisticated scenarios, such as refreshing the

list, guiding its composition, and incorporating dynamic adjustments to the weariness probability

beyond temporal decay. Additionally, our model assumes the relevance score accurately reflects

a user’s interest in an item. However, since the relevance score is algorithmically computed

and may not be entirely accurate, we can adapt the user behavior model by incorporating a

random discount factor for the relevance of each item. Finally, the proposed strategy can be

improved in several ways, such as integrating different distance measures or extending it to

include additional metrics beyond diversity, like serendipity or fairness.
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A. Additional Results

Table 1 presents a comprehensive analysis of div𝐷 , div𝐶 and 𝜅 when E[steps] = 5. Additionally,

we report the deviations from the maximum diversity scores in terms of distance and coverage,

denoted as Δ�̄� and Δ�̄� , along with ΔE[steps]. We observe that our strategy, either explore-D or

explore-C , consistently outperforms the competitors in terms of both div𝐷 and div𝐶 across all

datasets. We also show how these values deviate from the expected maximum values. Notably,

on the Movielens-1M dataset, their scores are very close to their maxima. Our strategy achieves

significantly higher scores than the competitors on all datasets, especially in terms of coverage.

Table 2 reports additional results for E[steps] ∈ [10, 20].
Figure 3 shows the trade-off between diversity and accuracy, computed in terms of HR@10

and Precision@10. Figure 2 reports the timing (in second) needed to produce a recommendation

list L𝑡. Notably, while competitors such as MMR and DPP struggle with larger datasets, the

timing of our strategy is basically constant across all the datasets.
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Figure 2: Timing for producing L𝑡. The 𝑥-axis reports the strategies, while the 𝑦-axis the recommenda-

tion time (in seconds).
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Figure 3: Trade-off between either div
𝐶

or div
𝐷

and either HR@10 or Precision@10 across all the

datasets. The 𝑥-axis shows the recommendation quality while the 𝑦-axis represents the diversity score.



Table 1
Results for E[steps] = 5. Any best scores with a statistical significance 𝑝 < 0.05 are highlighted in bold.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ�̄� ΔE[steps]

M
o
v
i
e
l
e
n

s
-
1
M

Relevance 3.67 0.22 5.0 0.27 0.73 0.0

explore-D 4.91 0.36 4.98 0.03 0.55 0.0

explore-C 4.43 0.71 4.71 0.12 0.11 0.06

MMR 3.96 0.29 4.57 0.22 0.64 0.09

DUM 4.4 0.33 4.98 0.13 0.59 0.0

DPP 4.59 0.31 4.99 0.09 0.61 0.0

DGREC 3.36 0.37 4.49 0.33 0.54 0.1

C
o
a
t

Relevance 3.15 0.3 4.36 0.38 0.3 0.13

explore-D 3.48 0.34 4.16 0.31 0.2 0.17

explore-C 3.36 0.35 4.13 0.33 0.18 0.17

MMR 2.43 0.26 3.54 0.52 0.39 0.29

DUM 3.11 0.3 4.31 0.38 0.3 0.14

DPP 3.28 0.31 4.33 0.35 0.27 0.13

DGREC 2.2 0.24 3.2 0.56 0.44 0.36

K
u

a
i
R

e
c
-
2
.0

Relevance 0.76 0.13 4.81 0.81 0.74 0.04

explore-D 1.56 0.11 3.54 0.61 0.78 0.29

explore-C 1.08 0.34 4.09 0.73 0.32 0.18

MMR 1.25 0.12 3.89 0.68 0.76 0.22

DUM 0.83 0.17 4.8 0.79 0.66 0.04

DPP 1.38 0.09 4.75 0.65 0.82 0.05

DGREC 0.77 0.11 2.64 0.81 0.78 0.47

N
e
t
f
l
i
x

Relevance 4.04 0.32 4.86 0.2 0.59 0.03

explore-D 4.62 0.38 4.75 0.09 0.51 0.05

explore-C 3.97 0.6 4.43 0.21 0.22 0.11

MMR 3.56 0.3 4.19 0.3 0.61 0.16

DUM 4.16 0.36 4.89 0.18 0.53 0.02

DPP 4.38 0.34 4.88 0.13 0.56 0.02

DGREC 3.0 0.26 3.74 0.41 0.66 0.25

Y
a
h

o
o
-
R

2

Relevance 0.66 0.02 4.77 0.87 0.77 0.05

explore-D 4.4 0.08 4.49 0.13 0.1 0.1

explore-C 4.38 0.08 4.47 0.13 0.1 0.11

MMR 2.45 0.04 3.96 0.52 0.55 0.21

DUM 4.38 0.07 4.72 0.13 0.21 0.06

DPP 4.38 0.07 4.72 0.13 0.21 0.06

DGREC 1.02 0.02 3.68 0.8 0.77 0.26



Table 2
Results with E[steps] ∈ [10, 20] across all the datasets. Best scores with statistical significance 𝑝 < 0.05
are in bold.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ�̄� ΔE[steps]

M
o
v
i
e
l
e
n

s
-
1
M

Relevance 7.45 0.34 10.02 0.26 0.64 0.0

explore-D 9.77 0.63 9.85 0.03 0.32 0.02

explore-C 8.84 0.89 9.7 0.12 0.05 0.03

MMR 7.29 0.43 8.62 0.27 0.54 0.14

DUM 8.95 0.51 10.03 0.11 0.45 0.0

DPP 9.29 0.5 9.99 0.08 0.46 0.0

DGREC 6.89 0.49 8.92 0.31 0.47 0.11

C
o

a
t

Relevance 6.38 0.44 8.64 0.36 0.35 0.14

explore-D 6.73 0.51 8.02 0.33 0.25 0.2

explore-C 6.31 0.55 7.81 0.37 0.19 0.22

MMR 4.63 0.38 6.75 0.54 0.44 0.32

DUM 6.44 0.46 8.65 0.36 0.32 0.13

DPP 6.64 0.45 8.61 0.34 0.34 0.14

DGREC 4.56 0.37 6.33 0.55 0.46 0.37

K
u

a
i
R

e
c
-
2
.0

Relevance 1.63 0.21 9.6 0.79 0.71 0.04

explore-D 3.06 0.17 6.86 0.61 0.77 0.31

explore-C 2.22 0.53 7.95 0.72 0.28 0.2

MMR 2.52 0.2 7.34 0.68 0.73 0.27

DUM 1.78 0.27 9.59 0.77 0.63 0.04

DPP 2.81 0.15 9.54 0.64 0.8 0.05

DGREC 1.71 0.19 5.45 0.78 0.74 0.45

N
e
t
f
l
i
x

Relevance 8.17 0.46 9.73 0.19 0.47 0.03

explore-D 9.03 0.59 9.24 0.1 0.32 0.08

explore-C 7.92 0.77 8.69 0.21 0.12 0.13

MMR 6.76 0.43 7.94 0.33 0.51 0.21

DUM 8.36 0.51 9.72 0.17 0.41 0.03

DPP 8.82 0.5 9.73 0.12 0.43 0.03

DGREC 6.15 0.39 7.44 0.39 0.55 0.26

Y
a
h

o
o

-
R

2

Relevance 1.39 0.03 9.49 0.86 0.83 0.05

explore-D 8.71 0.15 8.73 0.13 0.14 0.13

explore-C 8.67 0.15 8.7 0.14 0.14 0.13

MMR 3.86 0.05 7.36 0.62 0.71 0.26

DUM 8.86 0.12 9.43 0.12 0.31 0.06

DPP 8.84 0.12 9.41 0.12 0.31 0.06

DGREC 2.04 0.03 7.35 0.8 0.83 0.26

(a) E[steps] = 10.

Dataset Strategy div
𝐷

div
𝐶

𝜅 Δ�̄� Δ�̄� ΔE[steps]

M
o
v
i
e
l
e
n

s
-
1
M

Relevance 14.96 0.48 20.04 0.25 0.51 0.0

explore-D 18.96 0.86 19.4 0.05 0.12 0.03

explore-C 16.81 0.97 19.76 0.16 0.01 0.01

MMR 13.45 0.57 16.49 0.33 0.42 0.18

DUM 17.98 0.7 20.16 0.1 0.29 -0.01
DPP 18.6 0.71 20.02 0.07 0.28 0.0

DGREC 13.91 0.63 17.64 0.31 0.36 0.12

C
o

a
t

Relevance 12.23 0.59 16.36 0.39 0.33 0.18

explore-D 12.85 0.7 15.48 0.36 0.21 0.23

explore-C 12.09 0.77 15.36 0.4 0.13 0.23

MMR 8.79 0.53 13.12 0.56 0.4 0.34

DUM 12.63 0.62 16.78 0.37 0.3 0.16

DPP 13.06 0.62 16.84 0.35 0.3 0.16

DGREC 9.31 0.53 12.84 0.54 0.4 0.36

K
u

a
i
R

e
c
-
2
.0

Relevance 3.62 0.32 19.02 0.77 0.65 0.05

explore-D 6.16 0.26 13.83 0.61 0.71 0.31

explore-C 4.55 0.76 15.09 0.71 0.16 0.25

MMR 4.79 0.3 13.91 0.69 0.67 0.3

DUM 3.86 0.39 19.09 0.75 0.57 0.05

DPP 5.56 0.24 18.99 0.64 0.73 0.05

DGREC 3.55 0.3 11.33 0.77 0.67 0.43

N
e
t
f
l
i
x

Relevance 16.19 0.6 19.29 0.19 0.34 0.04

explore-D 17.38 0.77 17.98 0.13 0.15 0.1

explore-C 15.6 0.87 17.53 0.22 0.04 0.12

MMR 12.79 0.56 15.34 0.36 0.38 0.23

DUM 16.59 0.65 19.33 0.17 0.29 0.03

DPP 17.49 0.66 19.36 0.13 0.27 0.03

DGREC 12.11 0.53 14.59 0.4 0.42 0.27

Y
a
h

o
o

-
R

2

Relevance 3.0 0.04 18.81 0.85 0.88 0.06

explore-D 16.48 0.28 16.5 0.18 0.17 0.18

explore-C 16.43 0.28 16.46 0.18 0.17 0.18

MMR 5.9 0.07 13.89 0.71 0.79 0.31

DUM 17.59 0.19 18.73 0.12 0.44 0.06
DPP 17.6 0.19 18.74 0.12 0.44 0.06

DGREC 3.92 0.04 14.56 0.8 0.88 0.27

(b) E[steps] = 20.
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