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Abstract
The success of Graph Neural Networks (GNNs) has led to a need for understanding their decision-
making process and providing explanations for their predictions, which has given rise to explainable
AI (XAI) that offers transparent explanations for black-box models. Recently, the use of prototypes has
successfully improved the explainability of models by learning prototypes to imply training graphs that
affect the prediction. However, these approaches tend to provide prototypes with excessive information
from the entire graph, leading to the exclusion of key substructures or the inclusion of irrelevant
substructures, which can limit both the interpretability and the performance of the model in downstream
tasks. In this work, we propose a novel framework of explainable GNNs, called interpretable graph model
with Prototype-Based Graph Information Bottleneck, that incorporates prototype learning within the
information bottleneck framework to provide prototypes with the key subgraph from the input graph
that is important for the model prediction. Extensive experiments demonstrate that PGIB outperforms
state-of-the-art methods in terms of both prediction performance and explainability.
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1. Introduction

In general, explainability can be viewed from two perspectives: 1) improving the
interpretability by providing explanations for the model’s predictions, and 2) providing the
reasoning process behind the model prediction by giving explanations for the model’s training
process. Improving the interpretability in GNNs involves detecting important substructures
during the inference phase, which is useful for tasks such as identifying functional groups in
molecular chemistry [1, 2, 3, 4]. On the other hand, it is also important to provide the reasoning
process for why the model predicts in a certain way so as to understand the model in a more
fundamental level. Through this reasoning process, we can visualize and analyze how the
model makes correct or incorrect decisions, thus obtaining crucial information for improving
its performance.

Some approaches to explore the reasoning process can be generally classified into two main
categories: 1) post-hoc approaches, and 2) built-in approaches. Post-hoc approaches [5, 6, 7]
focus on exploring the model outputs by visualizing the degree of activation of neurons based
on gradients. However, the post-hoc approaches require a separate explanatory model for
each trained model, resulting in the need for a new explanatory model for additional training
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Figure 1: Comparison of the learned prototypes between ProtGNN and PGIB.

data and different models [8, 9]. In order to address the aforementioned challenges, built-in
approaches aim to integrate the generation of explanations into the model training process.
One such approach is prototype learning, which involves learning prototypes that represent
each class of the input data, which are then compared with new instances to make predictions.
ProtGNN [10], for instance, measures the similarity between the embedding of an input graph
and each prototype, providing explanations through the similarity calculation and making
predictions for the input graph based on its similarity with the learned prototypes.

However, since ProtGNN compares the graph-level embedding of an input graph with the
learned prototypes, the model overlooks the key substructures in the input graph while also
potentially including uninformative substructures. This not only results in a degradation of the
interpretability of the reasoning process, but also limits the performance on the downstream
tasks. Figure 1(a) shows the prototype graphs in the training set (i.e., 𝒢𝑝, denoted as bold
edges) detected by ProtGNN for an input molecule (i.e., 𝒢) that belongs to the “mutagenic” class.
Despite the NO2 structure being the key functional group for classifying a given molecule
as “mutagenic,” 𝒢𝑝 detected by ProtGNN tends to include ring structures (i.e., uninformative
substructures), and exclude NO2 structures (i.e., key substructures) in learned prototypes, which
is mainly due to the fact that the input graph 𝒢 is considered in the whole graph-level. As
a result, it is crucial to identify a key subgraph within the input graph that holds essential
information for the learning of prototypes. Among the various solutions for detecting important
subgraphs, the Information Bottleneck (IB) has emerged as one of the most effective methods
[11, 12, 13]. We aim to approach the IB principle from the perspective of prototypes to convey
important substructure information to the prototypes.

To this end, we propose a novel framework of explainable GNNs, called Interpretable
Graph Model with Prototype-based Graph Information Bottleneck (PGIB). The main idea
is to incorporate prototype learning within the IB framework, which enables the prototypes to
capture the key subgraph of the input graph detected by the IB framework. This enables the
learning of prototypes 𝒢𝑝 based on the key subgraph 𝒢𝑠𝑢𝑏, leading to a more precise explanation
of the reasoning process and improvement in the performance on the downstream tasks. In
Figure 1(b), PGIB is shown to successfully detect the key subgraph 𝒢𝑠𝑢𝑏 that includes NO2.

Our main contributions can be summarized as follows: 1) We propose an effective approach,
PGIB, that not only improves the interpretability of the reasoning process, but also the overall
performance in downstream tasks by incorporating the prototype learning in a process of
detecting key subgraphs based on the IB framework. 2) We provide theoretical background with
our method that utilizes interpretable prototypes in the process of optimizing 𝒢𝑠𝑢𝑏. 3) Extensive
experiments, including qualitative analysis, demonstrate that PGIB outperforms state-of-the-art
methods in terms of both prediction performance and explainability.
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Figure 2: The architecture of our proposed PGIB. PGIB generates a subgraph 𝒢𝑠𝑢𝑏 by injecting noise to
identify core subgraphs, and it is used to compute similarity scores between prototypes in the prototype
layer. The trained prototypes play a crucial role in visualizing the reasoning processes during training in
an interpretable manner. PGIB also involves merging pairs of similar prototypes to decrease the number
of prototypes. Finally, the integrated prototypes are utilized to predict the graph labels in the fully
connected layer.

2. Notations.

We use 𝒢 = (𝒱, ℰ ,A,X) to denote a graph, where 𝒱 , ℰ , A and X denote the set of nodes and
edges, the adjacency matrix and node features, respectively. We assume that each node 𝑣𝑖 ∈ 𝒱 is
associated with a feature vector x𝑖, which is the 𝑖-th row of X. We use {(𝒢1, 𝑦1), · · · , (𝒢𝑁 , 𝑦𝑁 )}
to denote the set of 𝑁 graphs with its corresponding labels. The graph labels are given by a set
of 𝐾 classes 𝒞 = {1, 2, . . . ,𝐾}, and the ground truth label of a graph 𝒢𝑖 is denoted by 𝑦𝑖 ∈ 𝒞.
We use 𝒢𝑠𝑢𝑏 to denote a subgraph of 𝒢, and use �̄�𝑠𝑢𝑏 to denote the complementary structure
of 𝒢𝑠𝑢𝑏 in 𝒢. We also introduce the prototype layer, which consists of a set of prototypes
𝒵𝑝 =

{︁
z1𝒢𝑝

, z2𝒢𝑝
, · · · , z𝑀𝒢𝑝

}︁
, where 𝑀 is the total number of prototypes, and each prototype

z𝑚𝒢𝑝
is a learnable parameter vector that serves as the latent representation of the prototypical

part (i.e., 𝒢𝑝) of graph 𝒢. We allocate 𝐽 prototypes for each class, i.e., 𝑀 = 𝐾 × 𝐽 .

3. Methodology

3.1. Prototype-based Graph Information Bottleneck

PGIB is a novel explainable GNN framework that incorporates the prototype learning within
the IB framework, thereby enabling the prototypes to capture the essential key subgraph of the
input graph detected by the IB framework. More precisely, we reformulate the GIB objective [11]
by decomposing the first term, i.e., 𝐼(𝑌 ;𝒢𝑠𝑢𝑏), with respect to the prototype 𝒢𝑝 using the chain
rule of mutual information in order to examine the impact of the joint information between
𝒢𝑠𝑢𝑏 and 𝒢𝑝 on 𝑌 as follows:

min
𝒢𝑠𝑢𝑏

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) + 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏)⏟  ⏞  
Section 3.3

+𝛽 𝐼(𝒢;𝒢𝑠𝑢𝑏)⏟  ⏞  
Section 3.2

. (1)

Please refer to Appendix A.1 for a detailed proof of Equation 1. In the following sections, we
describe how each term is optimized during training.



3.2. Subgraph Extraction Layer (Minimizing 𝐼(𝒢;𝒢𝑠𝑢𝑏))

The goal of the subgraph extraction layer is to extract an informative subgraph 𝒢𝑠𝑢𝑏 from 𝒢
that contains minimal information about 𝒢. We minimize 𝐼(𝒢;𝒢𝑠𝑢𝑏) by training the model to
inject noise into insignificant subgraphs �̄�𝑠𝑢𝑏, while injecting less noise into informative ones
𝒢𝑠𝑢𝑏 [14]. Specifically, given the representation of node 𝑣𝑖, i.e., h𝑖, we compute the probability
𝑝𝑖, which is then used to replace the representation ℎ𝑖 to obtain the final representation z𝑖 as:

𝑝𝑖 = Sigmoid(MLP(ℎ𝑖))

𝑧𝑖 = 𝜆𝑖ℎ𝑖 + (1− 𝜆𝑖)𝜖, where 𝜆𝑖 ∼ Bernoulli(𝑝𝑖) and 𝜖 ∼ 𝒩 (𝜇h𝑖 , 𝜎
2
h𝑖
).

(2)

Following [14], we minimize the upper bound of 𝐼(𝒢;𝒢𝑠𝑢𝑏) as:

𝐼(𝒢;𝒢𝑠𝑢𝑏) ≤ E𝒢(−
1

2
log𝐴+

1

2|𝒱𝒢 |
𝐴+

1

2|𝒱𝒢 |
𝐵2) =: ℒ1

MI(𝒢,𝒢𝑠𝑢𝑏), (3)

where 𝐴 =
∑︀|𝒱𝒢 |

𝑖=1 (1 − 𝜆𝑖)
2 and 𝐵 =

∑︀|𝒱𝒢|
𝑖=1 𝜆𝑖(h𝑖−𝜇h𝑖

)

𝜎h𝑖
. Thus, minimizing ℒ1MI allows us to

minimize the upper bound of 𝐼(𝒢;𝒢𝑠𝑢𝑏).

3.3. Prototype Layer (Minimizing −𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) + 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) )

The prototype layer involves allocation of a fixed number of prototypes for each class. The
prototypes are required to capture the most significant graph patterns within each class. To begin
with, we define the similarity score between the prototype z𝒢𝑝 and the embedding z𝒢𝑠𝑢𝑏

obtained
from noise injection as : 𝑔(z𝒢𝑠𝑢𝑏

, z𝒢𝑝) = log
[︀(︀
‖z𝒢𝑠𝑢𝑏

− z𝒢𝑝‖22 + 1
)︀
/
(︀
‖z𝒢𝑠𝑢𝑏

− z𝒢𝑝‖22 + 𝜖
)︀]︀

where z𝒢𝑝 is the prototype and shares the same dimension as z𝒢𝑠𝑢𝑏
.

3.3.1. Minimizing −𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝)

We derive the lower bound of 𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) as follows:

Proposition 1. (Lower bound of 𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝)) Given significant subgraph 𝒢𝑠𝑢𝑏 for a graph 𝒢, its label
information 𝑌 , prototype graph 𝒢𝑝 and similarity function 𝛾, we have

𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) = E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑝 (𝑌 |𝒢𝑠𝑢𝑏,𝒢𝑝)]− E𝑌 [log 𝑝(𝑌 )]

≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑝 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝))]− E𝑌 [log 𝑝(𝑌 )]

≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑞𝜃 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝))]

=: −ℒcls(𝑞𝜃 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝))

(4)

where 𝑞𝜃 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝)) is the variational approximation to the true posterior 𝑝 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝)).

3.3.2. Minimizing 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏)

We decompose 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) into the sum of two terms as follows:
𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) = 𝐼(𝒢𝑝;𝑌,𝒢𝑠𝑢𝑏)− 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝). (5)

It is important to note that the first term, i.e., 𝐼(𝒢𝑝;𝑌,𝒢𝑠𝑢𝑏), eliminates the information about
𝑌 related to 𝒢𝑠𝑢𝑏 from 𝒢𝑝. However, since our goal is not to solely minimize 𝐼(𝒢𝑝;𝑌,𝒢𝑠𝑢𝑏)
but to ensure the interpretability of the prototype 𝒢𝑝, including this term leads to diminished
interpretability of 𝒢𝑝. Consequently, we excluded the first term during training, and only
consider the second term, i.e., −𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝), to simultaneously guarantee the interpretability of



both 𝒢𝑠𝑢𝑏 and 𝒢𝑝. A detailed derivation for Equation 5 is given in Appendix A.3. To minimize
−𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝), we introduce two different approaches.

1) Variational IB-based approach. We obtain the upper bound of −𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝) using the
variational IB-based approach as follows:

−𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝) ≤ E𝒢𝑠𝑢𝑏,𝒢𝑝 [− log 𝑞𝜑(𝒢𝑝|𝒢𝑠𝑢𝑏)] := ℒ2
MI(𝒢𝑠𝑢𝑏,𝒢𝑝), (6)

where 𝑞𝜑(𝒢𝑝|𝒢𝑠𝑢𝑏) is the variation approximation of 𝑝(𝒢𝑝|𝒢𝑠𝑢𝑏). Equation 6 shows that
the maximization of the mutual information 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝) can be attained by minimizing
ℒ2MI(𝒢𝑠𝑢𝑏,𝒢𝑝). We select a single-layer linear transformation as a modeling option for 𝑞𝜑
to minimize the information loss of 𝒢𝑠𝑢𝑏 when predicting 𝒢𝑝.

2) Contrastive learning-based approach. Recent studies on contrastive learning [15, 16, 17]
have proven that minimizing contrastive loss is equivalent to maximizing the mutual
information between two variables. Hence, we additionally propose a variant of PGIB, i.e.,
PGIBcont, that minimizes the contrastive loss. The contrastive loss is defined as follows:

ℒ2
MI = − 1

𝑛

𝑛∑︁
𝑖=1

log

∑︀
𝑗:z

𝒢𝑗
𝑝
∈P𝑦𝑖

exp(𝑔(z𝒢𝑖
𝑠𝑢𝑏

, z𝒢𝑗
𝑝
)/𝜏)

∑︀
𝑘:z𝒢𝑘

𝑝
/∈P𝑦𝑖

exp(𝑔(z𝒢𝑖
𝑠𝑢𝑏

, z𝒢𝑘
𝑝
)/𝜏)

. (7)

where 𝜏 is the temperature hyperparameter, 𝑛 denotes the number of graphs in a batch, and 𝑗
and 𝑘 indicate indices of positive and negative samples, respectively. P𝑦𝑖 is the set of prototypes
that belong to class 𝑦𝑖. We confer interpretability to 𝒢𝑝 by increasing its similarity with 𝒢𝑠𝑢𝑏.
3.4. Prediction Layer
We compute the predicted probability 𝜋 ∈ R𝐾 by passing similarity scores r ∈ R𝑀 and z𝒢𝑠𝑢𝑏

through a linear layer with weights 𝜔. Then we calculate cross-entropy classification loss as:

ℒcls = −
1

𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑐=1

I(𝑦𝑖 = 𝑐) log(𝜋𝑐). (8)

Finally, we define the total objective as follows: ℒtotal = ℒcls+𝛼1ℒ1MI+𝛼2ℒ2MI+𝛼3ℒcon, where
ℒcon is defined in Appendix A.4.3 and a detailed ablation study is provided in Appendix A.5.2.

4. Experimental Results
Graph Classification. Experimental results for graph classification are presented in the Table 1.
We have the following observations: 1) All variants of PGIB outperform the baselines including
both the prototype-based and IB-based methods on all datasets. Notably, PGIBs incorporate
the crucial information of the key subgraph, which significantly contributes to enhancing the
classification performance. PGIBcont achieves a significant improvement of up to 5.6% compared
to the runner-up baseline. 2) We observe that PGIBcont performs relatively better than PGIB.
We attribute this to the nature of the contrastive loss, which is generally shown to be effective
in classifying instances between different classes, allowing the prototypes learned based on the
contrastive loss to be more distinguishable from one another.
Graph Interpretation. Figure 3(a) presents the visualization of subgraphs in Mutag dataset.
The NO2 functional group is known to be a cause of mutagenicity [1, 26]. In the figure, the
bold edges connect the nodes that the models consider important. The NO2 group in Mutag is



Table 1
Evaluation on graph classification (accuracy).

Dataset
Methods

GCN [18] GIN [19] GAT [20] ProtGNN [10] GIB [12] VGIB [14] GSAT [21] PGIB PGIBcont

MUTAG [22] 74.50±7.89 80.50±7.89 73.50±7.43 80.50±9.07 79.00±6.24 81.00±6.63 80.88±8.94 85.00±7.07 85.50±5.22
PROTEINS [23] 72.83±4.23 70.30±4.84 71.35±4.85 73.83±4.22 75.25±5.92 73.66±3.32 69.64±4.71 77.14±2.19 77.50±2.42

NCI1 [24] 73.16±3.49 75.04±2.08 66.05±1.03 74.13±2.10 64.65±6.78 63.75±3.37 68.13±2.64 77.65±2.20 78.25±2.13
DD [25] 72.53±4.51 72.04±3.62 70.81±4.33 69.15±4.33 72.61±8.26 72.77±5.63 71.93±2.74 73.36±1.80 73.70±2.14

Table 2: Evaluation on graph interpretation (Fidelity scores).

Method ℱ− ↓ ℱ+ ↑
RLM HLM-CLint QED DRD2 RLM HLM-CLint QED DRD2

GNNexplainer [1] 0.478 0.616 0.498 0.433 0.694 0.778 0.602 0.740
PGexplainer [4] 0.502 0.620 0.560 0.540 0.632 0.692 0.598 0.686

GIB [12] 0.483 0.643 0.525 0.428 0.654 0.781 0.601 0.724
VGIB [14] 0.463 0.579 0.487 0.424 0.765 0.792 0.627 0.756
PGIBcont 0.441 0.593 0.459 0.406 0.747 0.772 0.613 0.771

PGIBcont + merge 0.415 0.543 0.447 0.379 0.765 0.796 0.635 0.781

Figure 3: Explanation visualizations on Mutag (a) and BA-2Motifs (b)

PGIB VGIB ProtGNN GNNexplainer PGIB VGIB ProtGNN GNNexplainer

(a) Mutag (b) BA-2Motifs

correctly identified by PGIB, while other baselines fail to recognize all NO2 groups or include
other unnecessary substructures. Figure 3(b) presents the visualization in BA-2Motifs dataset.
We observe that PGIB accurately recognizes motif graphs containing the label information such
as a five-node cycle, but other models have difficulty in detecting complete motifs.

We also perform quantitative experiments using the Fidelity metric (i.e., ℱ− and ℱ+) [5, 7].
The Fidelity metric quantifies the extent to which explanations accurately capture the important
components. In other words, they measure how well the predictions made solely based on
the extracted subgraph (i.e., ℱ−) and the remaining subgraph (i.e., ℱ+) mimic the predictions
made based on the entire graph, respectively. Hence, a low value of ℱ− and a high value of ℱ−
indicate better explainability of the model. Table 2 shows the fidelity scores on four datasets
at the sparsity score of 𝑘 = 0.5. Our proposed model outperforms both post-hoc and built-in
state-of-the-art explanation models in all datasets. Furthermore, merging prototypes achieves
significant improvements in terms of interpretability. This implies that decreasing the number
of prototypes can eliminate uninformative substructures and emphasize key substructures,
which increases the interpretability of the extracted subgraphs.

5. Conclusion
We propose a novel framework of explainable GNNs, called interpretable graph model with
Prototype-based Graph Information Bottleneck (PGIB), that integrates prototype learning into
the information bottleneck framework. The main idea of PGIB is to learn prototypes that capture
subgraphs containing key structures relevant to the label information. Experimental results
show that PGIB achieves improvements not only in the performance on downstream tasks, but
also provides more precise explanation of the reasoning process.
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A. Appendix

A.1. Prototype-based Graph Information Bottleneck - Eq. 1

The GIB objective is :
min
𝒢𝑠𝑢𝑏

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏) + 𝛽𝐼(𝒢;𝒢𝑠𝑢𝑏). (9)

For the first term −𝐼(𝑌 ;𝒢𝑠𝑢𝑏), by definition:

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏) = −E𝑌,𝒢𝑠𝑢𝑏

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏)
𝑝(𝑌 )𝑝(𝒢𝑠𝑢𝑏)

]︂
. (10)

We allow the involvement of 𝒢𝑝 in Eq. 10 as follows:

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏) = −E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝑌 )

]︂
− E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝒢𝑠𝑢𝑏)

]︂
= −E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝑌 )

]︂
+ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝒢𝑠𝑢𝑏)
𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)

]︂
= −E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝑌 )

]︂
+ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑝|𝒢𝑠𝑢𝑏)
𝑝(𝑌 |𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝|𝒢𝑠𝑢𝑏)

]︂
.

(11)
By the definition of conditional probability, we have the following equation:

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏) = −𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) + 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏). (12)

Finally, we have the following equation by combining Eq. 9 and Eq. 12:

min
𝒢𝑠𝑢𝑏

−𝐼(𝑌 ;𝒢𝑠𝑢𝑏,𝒢𝑝) + 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) + 𝛽𝐼(𝒢;𝒢𝑠𝑢𝑏). (13)

A.2. Proof of Proposition 1

In this section, we provide a proof for Proposition 1 in the main paper.

For the term 𝐼(𝑌 ;𝒢𝑝,𝒢𝑠𝑢𝑏),

𝐼(𝑌 ;𝒢𝑝,𝒢𝑠𝑢𝑏) = E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝 (𝑌 |𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝑌 )

]︂
≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))
𝑝(𝑌 )

]︂
.

(14)

We introduce a variational approximation 𝑞𝜃 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝)) of 𝑝 (𝑌 |𝛾 (𝒢𝑠𝑢𝑏,𝒢𝑝)).



𝐼(𝑌 ;𝒢𝑝,𝒢𝑠𝑢𝑏) ≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))
𝑝(𝑌 )

]︂
+ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))
𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))

]︂
= E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))
𝑝(𝑌 )

]︂
+ E𝒢𝑠𝑢𝑏,𝒢𝑝 [𝐾𝐿 [𝑝 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝)) ‖𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))]] .

(15)

According to the non-negativity of KL divergence, we have:

𝐼(𝑌 ;𝒢𝑝,𝒢𝑠𝑢𝑏) ≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))
𝑝(𝑌 )

]︂
= E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))]− E𝑌 [log 𝑝(𝑌 )]

= E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))] +𝐻(𝑌 ).

(16)

Finally, we have the following equation as:

𝐼(𝑌 ;𝒢𝑝,𝒢𝑠𝑢𝑏) ≥ E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝 [log 𝑞𝜃 (𝑌 |𝛾(𝒢𝑠𝑢𝑏,𝒢𝑝))] . (17)

A.3. Decomposition of 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) - Eq. 5

For the term 𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏), by definition:

𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) = E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑝|𝒢𝑠𝑢𝑏)
𝑝(𝑌 |𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝|𝒢𝑠𝑢𝑏)

]︂
. (18)

By the definition of conditional probability, we have the following equation:

𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) = E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝒢𝑠𝑢𝑏)
𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)

]︂
. (19)

We allow the involvement of 𝒢𝑝 in Eq. 19 as follows:

𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) = E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝)
𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)𝑝(𝒢𝑝)

]︂
= E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝)

+ log
𝑝(𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝)
𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)

]︂
= E𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝑌,𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝑌,𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝)

]︂
− E𝒢𝑠𝑢𝑏,𝒢𝑝

[︂
log

𝑝(𝒢𝑠𝑢𝑏,𝒢𝑝)
𝑝(𝒢𝑠𝑢𝑏)𝑝(𝒢𝑝)

]︂
.

(20)

Finally, we have the following equation as:

𝐼(𝑌 ;𝒢𝑝|𝒢𝑠𝑢𝑏) = 𝐼(𝒢𝑝;𝑌,𝒢𝑠𝑢𝑏)− 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝). (21)



A.4. Interpretability Stabilization
A.4.1. Merging Prototypes

Since the number of prototypes for each class is determined before training, some of the learned
prototypes may share similar semantics, which negatively affects the model interpretability for
which the small size and low complexity are desirable [27, 28]. Inspired by [29], we propose a
method to effectively merge the prototypes for graph-structured data, which, in turn, enhances
the explanation of the reasoning process and improves performance on downstream tasks while
reducing model complexity. The main idea is to merge prototypes based on the similarity
between prototype pairs using the embeddings z𝒢𝑠𝑢𝑏. This similarity utilizes all training
subgraphs (i.e.,

⋃︀
𝒢∈𝒳
𝒢𝑠𝑢𝑏, where 𝒳 is the training set) by measuring the disparity between

𝑔(z𝒢𝑠𝑢𝑏
, z𝒢𝑖

𝑝
) and 𝑔(z𝒢𝑠𝑢𝑏

, z𝒢𝑗
𝑝
) as follows:

ℎ(z𝒢𝑖
𝑝
, z𝒢𝑗

𝑝
) =

[︃∑︁
𝒢∈𝒳

(𝑔(z𝒢𝑠𝑢𝑏
, z𝒢𝑖

𝑝
)− 𝑔(z𝒢𝑠𝑢𝑏

, z𝒢𝑗
𝑝
))2

]︃−1

. (22)

Then, for every pair (z𝒢𝑖
𝑝
, z𝒢𝑗

𝑝
) that falls within the highest 𝜉 percent of similar pairs, the

prototype z𝒢𝑗
𝑝

and its corresponding weights 𝜔(z𝒢𝑗
𝑝
) are removed, and the weights 𝜔(z𝒢𝑖

𝑝
) are

updated to the sum of 𝜔(z𝒢𝑖
𝑝
) and 𝜔(z𝒢𝑗

𝑝
). We combine the 𝜉 percentage of the most similar

prototype pairs based on the calculated similarity scores.

A.4.2. Prototype Projection

Since the learned prototypes are embedding vectors that cannot be directly interpreted, we
project each prototype z𝒢𝑝 onto the nearest latent training subgraph from the same class. This
process establishes a conceptual equivalence between each prototype and a training subgraph,
thereby enhancing interpretability of the prototypes. Specifically, we update prototype z𝒢𝑝 of
class 𝑘 (𝑖.𝑒., z𝒢𝑝 ∈ P𝑘) by performing the following operation:

z𝒢𝑝
← argmin

z̃∈Z
‖z̃− z𝒢𝑝

‖2, where Z =
{︁
z̃ : Readout{𝑓𝑔(�̃�)}, �̃� ∈ Subgraph(𝒢𝑖) ∀𝑖 s.t. 𝑦𝑖 = 𝑘

}︁
.

(23)
In the Equation 23, we use Monte Carlo Tree Search (MCTS) [30] to explore training subgraphs
�̃� during prototype projection.

A.4.3. Connectivity Loss

For an input graph 𝒢, we construct a node assignment 𝑆𝒢 ∈ R|𝒱𝒢 |×2 based on the probability
values that are computed by Equation 2. Specifically, 𝑆𝒢 [𝑗, 0] and 𝑆𝒢 [𝑗, 1] denote the probability
of node 𝑣𝑗 ∈ 𝒱𝒢 belonging to 𝒢𝑠𝑢𝑏 and �̄�𝑠𝑢𝑏, respectively. Following [12], poor initialization
of the matrix 𝑆 may result in the proximity of its elements 𝑆[𝑗, 0] and 𝑆[𝑗, 1] for ∀𝑣𝑗 ∈ 𝒱𝒢𝑖 ,
leading to an unstable connectivity of 𝒢𝑠𝑢𝑏. This instability can have adverse effects on the
subgraph generation process. To enhance the interpretability of 𝒢𝑠𝑢𝑏 by inducing a compact
topology, we utilize a batch-wise loss function as follows:

ℒcon = ‖Norm(𝑆𝑇
BAB𝑆B)− 𝐼2‖𝐹 (24)



where 𝑆B ∈ R
𝑛∑︀

𝑖=1
|𝒱𝒢𝑖 |×2

and AB ∈ R
𝑛∑︀

𝑖=1
|𝒱𝒢𝑖 |×

𝑛∑︀
𝑖=1

|𝒱𝒢𝑖 | are the node assignment and the
adjacency matrix at the batch level, respectively. 𝐼2 is 2-by-2 identity matrix, ‖ · ‖𝐹 is the
Frobenius norm and Norm(·) is the row normalization. Minimizing ℒcon indicates that if 𝑣𝑗
is in 𝒢𝑠𝑢𝑏 its neighbors also have a high probability to be in 𝒢𝑠𝑢𝑏, while if 𝑣𝑖 is in 𝒢𝑠𝑢𝑏, its
neighbors have a low probability to be in �̄�𝑠𝑢𝑏.

A.5. Additional Experiments

In this section, we present our additional experiments including hyperparameter Analysis
(Section A.5.1) ablation study (Section A.5.2), analysis of the different graph readout functions
(Section A.5.3), fidelity scores over sparsity (Section A.5.4), analysis of the hyperparameters 𝛼1,
𝛼2, 𝛼3 and 𝐽 (Section A.5.5) and reasoning process (Section A.5.6). All of our experiments were
performed with one NVIDIA GeForce A6000.

A.5.1. Hyperparameter Analysis

In Figure 4, we conduct a sensitivity analysis on the hyperparameters 𝛼1 and 𝛼2 of the final loss
(Equation ??) relevant to mutual information. Note that 𝛼1 and 𝛼2 are related to minimizing
𝐼(𝒢;𝒢𝑠𝑢𝑏) and maximizing 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝), respectively. 1) Figure 4(a) shows a significant decrease
in performance when 𝛼1 becomes large, i.e., when the model focuses on compressing the
subgraphs. This is because too much compression of subgraphs results in the loss of important
information, ultimately having a negative impact on the downstream performance. However,
when 𝛼1 = 0 (i.e., 𝒢 = 𝒢𝑠𝑢𝑏; no compression at all), uninformative information would be
included in 𝒢𝑠𝑢𝑏, which incurs a performance degradation. 2) Figure 4(b) visualizes the change
in performance depending on 𝛼2. A small value of 𝛼2 prevents sufficient transmission of
information from 𝒢𝑠𝑢𝑏 to 𝒢𝑝, whereas excessive value of 𝛼2 allows the influence of 𝒢𝑠𝑢𝑏 to
dominate the prototypes 𝒢𝑝, both of which lead to a performance deterioration.

Figure 4: Impact of 𝛼1 and 𝛼2 on PROTEINS dataset.

a 𝛼! b 𝛼"



A.5.2. Ablation Study

We perform ablation studies to examine the effectiveness of our model (i.e., PGIB and PGIBcont).
In Figure 5, the "with all" setting represents our final model that includes all the components.
We conducted ablation studies on losses related to mutual information (i.e., 𝐼(𝒢;𝒢𝑠𝑢𝑏) and
𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝)), merging prototypes, and the connectivity loss ℒcon. We have the following
observations: 1) The performance of the models significantly deteriorates when the terms related
to mutual information, 𝐼(𝒢;𝒢𝑠𝑢𝑏) and 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝), are not considered, compared to our final
model. Specifically, if we exclude the consideration of 𝒢𝑠𝑢𝑏 when constructing the prototypes
𝒢𝑝 (i.e., without maximizing 𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝)), the representations of the prototypes that directly
contribute to the final predictions cannot effectively obtain the informative information from the
subgraph 𝒢sub, resulting in a deterioration of performance. Moreover, if we fail to incorporate
the minimal sufficient information from the entire graph 𝒢 into 𝒢𝑠𝑢𝑏 (i.e., without minimizing
𝐼(𝒢;𝒢𝑠𝑢𝑏)), there is a higher likelihood of prototypes obtaining uninformative information,
which can ultimately lead to a deterioration in performance. 2) Merging prototypes improves
both PGIB and PGIBcont by enhancing the distinguishability of the remaining prototypes. This
process not only enhances the interpretability of the prototypes but also results in improved
classification accuracy. By merging similar prototypes, important features are emphasized
through the aggregation of weights from both prototypes. This results in a more precise and
effective representation of the data, enhancing the model’s interpretability and accuracy in
classification performance (i.e., "with all" setting performs better than "w/o merge" setting.). 3)
The connectivity loss ℒcon, which promotes the construction of more realistic subgraphs by
inducing a compact topology, has a significant impact on the performance. This improvement
can be attributed to the fact that subgraphs relevant to the target often form connected
components in real-world datasets. Therefore, incorporating the connectivity loss leads to
improved performance by ensuring that the subgraph maintains realistic connectivity patterns.

Figure 5: Ablation studies on PGIB.
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A.5.3. Analysis of the Different Graph Readout Functions

We conduct experiments on graph classification using different readout functions for PGIB. In
Table 3, we show the classification performance based on three readout functions: max-pooling,



mean-pooling, and sum-pooling, for both the PGIB and PGIBcont. Table 3 demonstrates that
max-pooling achieves the best performance in all datasets except for MUTAG dataset.

Table 3
Evaluation on the Different Graph Readout Functions (accuracy).

Dataset
Methods

PGIB PGIBcont

MaxPool MeanPool SumPool MaxPool MeanPool SumPool

MUTAG 80.50 ± 7.07 86.50 ± 7.84 80.50 ± 10.39 85.50 ± 5.22 88.50 ± 6.34 86.50 ± 7.43
PROTEINS 77.14 ± 2.19 72.32 ± 5.17 60.89 ± 12.07 77.50 ± 2.42 68.39 ± 4.40 66.07 ± 4.79

NCI1 77.65 ± 2.20 77.59 ± 7.41 63.96 ± 8.37 78.25 ± 2.13 77.52 ± 2.94 61.82 ± 3.96
DD 73.36 ± 1.80 67.56 ± 4.62 68.99 ± 4.56 73.70 ± 2.14 63.78 ± 5.40 64.12 ± 6.50

A.5.4. Fidelity Scores over Sparsity

Figure 6 visualizes the comparison of fidelity scores over various sparsity scores of subgraphs.
To ensure a fair comparison, the fidelity scores are compared under the same subgraph sparsity,
as the difference between the predictions of the original graph and subgraph strongly depends
on the level of sparsity. We observe that PGIBcont achieves the best performance in most sparsity
environments on the four datasets.

Figure 6: Comparisons of fidelity scores over sparsity scores 𝑘.
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A.5.5. Analysis of the Hyperparameters

We have conducted additional qualitative analysis. In this analysis, we compare the effects of
different choices for 𝛼1, 𝛼2, 𝛼3 (i.e., loss weights) and 𝐽 (i.e., the number of prototypes for each
class) at a more fine-grained level.



A.4.4.1 Visualization of 𝒢𝑠𝑢𝑏 based on 𝛼1

Figure 4 shows a large value of 𝛼1 reduces the performance. For further analysis, we visualize
the subgraph 𝒢𝑠𝑢𝑏 at different values of 𝛼1. The parameter 𝛼1 has an impact on the compression
of the subgraph from the entire input graph. In Figure 7, when 𝛼1 is large, 𝒢sub receives too
much compressed information from 𝒢, causing the loss of important data. It prevents 𝒢𝑝 from
containing label-relevant information, ultimately resulting in a negative impact on downstream
performance.

𝑁𝑂2

𝛼1 = 0.0001 𝛼1 = 0.01

𝛼1 = 1

Figure 7: Visualization of 𝒢𝑠𝑢𝑏 based on 𝛼1 on MUTAG dataset

A.4.4.2 Visualization of 𝒢𝑝 based on 𝛼2

We have performed the qualitative analysis on 𝛼2 to provide a better understanding of its
impact. It is crucial that the prototypes not only contain key structural information from the
input graph but also ensure a certain level of diversity since each class is represented by multiple
prototypes. In Figure 8, when we fix 𝛼1 at 0.1, the diversity of prototypes varies based on the
degrees of 𝛼2. Specifically, when 𝛼2 becomes 1, the diversity of prototypes decreases, leading
to a decline in the interpretability of the reasoning process and the overall model performance.
This finding highlights the importance of selecting proper 𝛼2 to ensure both interpretability
and performance are optimized.

𝑁𝑂2

𝛼2 = 0.0001 𝛼2 = 0.001

𝛼2 = 0.01 𝛼2 = 0.1

𝛼2 = 1

Figure 8: Visualization of 𝒢𝑝 based on 𝛼2 on MUTAG dataset



A.4.4.3 Visualization of 𝒢𝑠𝑢𝑏 based on 𝛼3

We mentioned that 𝛼3 is associated with the connectivity loss and plays a crucial role in
influencing the interpretability of 𝒢𝑠𝑢𝑏 by promoting compact topology in Section ??. To verify
this, we visualize the subgraph 𝒢𝑠𝑢𝑏 at different values of 𝛼3. In Figure 9, when we exclude the
connectivity loss from the loss function (i.e., set 𝛼3 to 0), 𝒢𝑠𝑢𝑏 tends to consist of non-connected
components. As a result, due to the wide and scattered range of detected subgraphs, the absence
of connectivity loss results in the formation of unrealistic subgraphs.

𝑁𝑂2

𝛼3 = 0 𝛼3 = 1

𝛼3 = 5

𝛼3 = 7

𝛼3 = 3

Figure 9: Visualization of 𝒢𝑠𝑢𝑏 based on 𝛼3 on MUTAG dataset

A.4.4.4 Visualization of 𝒢𝑝 based on 𝐽
We conducted interpretation visualizations of 𝒢𝑝 based on the number of prototypes for

each class in Figure 10. When the number of prototypes is small (as seen in the case with 3
prototypes), the prototypes do not contain diverse substructures. This limitation arises from
making predictions using a restricted number of prototypes. On the other hand, if the number
of prototypes is large (as shown in the case with 9 prototypes), a greater diversity of prototypes
can be achieved because various and complex information can be obtained from 𝒢𝑠𝑢𝑏.

𝑁𝑂2

J = 3 J = 5

J = 9J = 7

Figure 10: Visualization of 𝒢𝑝 based on the number of prototypes (𝐽 ) on MUTAG dataset



A.5.6. Reasoning Process

We illustrate the reasoning process on two datasets, i.e., MUTAG and BA2Motif, in Figure 11.
PGIB detects important subgraphs, and obtains similarity scores between subgraph 𝒢𝑠𝑢𝑏 and
prototype 𝒢𝑝. Then, PGIB computes the “points contributed” to predicting each class by
multiplying the similarity score between 𝒢𝑠𝑢𝑏 and 𝒢𝑝, with the weight assigned to each prototype
in the prediction layer. Lastly, PGIB outputs the class with the highest total point among all the
classes. We have the following observations in the reasoning process: 1) PGIB identifies the
specific substructures within 𝒢 that contain label-relevant information by extracting 𝒢𝑠𝑢𝑏 from
𝒢. 2) PGIB identifies which training graphs play a crucial role in the predictions by conducting
prototype projection to visualize the training graph that closely resembles the prototype. In
other words, since each prototype is projected onto the nearest training graph, we can identify
the training graph that had the most influence on predicting the target graph through the
prototypes. 3) PGIB identifies the influence of each “points contributed” on the final prediction
by examining the total point to each class.
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Figure 11: Reasoning process on MUTAG (a-b) and BA-2Motifs (c-d) datasets.



A.6. Baselines

In this part, we provide details on the baselines used in our experiments.

• ProtGNN [10] utilizes prototypes to explain prediction results by potentially representing
training graphs in graph neural networks. Specifically, ProtGNN measures the similarity
between the embedding in the input graph and each prototype, and makes predictions based
on the similarity. Additionally, ProtGNN can be extended to ProtGNN+ by incorporating
a module that samples the subgraphs from the input graph to visualize the most similar
subgraph to each prototype.

• GIB [12] utilizes the information bottleneck principle to detect important subgraphs in
graph-structured data. Specifically, this method aims to extract subgraph embeddings by
restricting the amount of information within the subgraph and retaining only the important
information. During the training of graph neural networks, GIB encourages the recognition
of important subgraphs within the graph data and performs graph classification tasks based
on this recognition.

• VGIB [14] introduces noise injection into the graph information bottleneck. VGIB aims
to enhance subgraph recognition by incorporating randomness into the graph data. This
addition of randomness helps acquire diverse subgraph representations and captures the
inherent uncertainty in the data, leading to enhanced performance in both classification
tasks and subgraph recognition tasks.

• GSAT [21] aims to achieve interpretable and generalizable graph learning through a
stochastic attention mechanism. It probabilistically estimates attention weights for
the relationships between nodes and edges in a graph. The probabilistic attention
mechanism enables the model to learn shared characteristics across domains and enhance
its generalization performance.

• GNNexplainer [1] is a post-hoc interpretation model designed to interpret the prediction
results of GNN models. Specifically, GNNExplainer optimizes a masking algorithm to
maximize the mutual information with the existing label information. Its goal is to make
the masked subgraph’s prediction as close as possible to the original graph, which helps to
detect substructures significant for predictions.

• PGexplainer [4] parameterizes the underlying structure as an edge distribution and
generates the explanatory graph by sampling. PGExplainer collectively explains multiple
instances by utilizing deep neural networks to parameterize the process of generating
explanations. It enables the interpretability of the GNN model’s behavior by adjusting the
weight parameters of the GNN model, which allows it to be readily applied in an inductive
setting.



Table 4
Source code links of the baseline methods

Methods Source code

ProtGNN https://github.com/zaixizhang/ProtGNN

GIB https://github.com/Samyu0304/graph-information-bottleneck-for-Subgraph-Recognition

VGIB https://github.com/Samyu0304/Improving-Subgraph-Recognition-with-Variation-Graph-Information-Bottleneck-VGIB-

GSAT https://github.com/Graph-COM/GSAT

GNNExplainer https://github.com/RexYing/gnn-model-explainer

PGExplainer https://github.com/flyingdoog/PGExplainer

A.7. Datasets

In this section, we provide details on the datasets used during training.

• MUTAG [22] consists of 188 molecular graphs, which are used to predict the properties of
mutagenicity in chemical structures. The graph labels are determined by the mutagenicity
of Salmonella typhimurium.

• PROTEINS [23] includes 1113 protein structures and is utilized for the classification of
proteins into enzymes or non-enzyme. Each node represents an amino acid in the protein
molecule, and edges connect nodes if the distance between the amino acids is less than 6
angstroms.

• NCI1 [24] contains 4110 chemical compounds specifically designed for anticancer testing.
Each chemical compound is labeled as either positive or negative based on its response to
cell lung cancer.

• DD [25] consists of 1178 protein structures labeled as either an enzyme or a non-enzyme,
similar to the previous dataset.

• BA2Motifs [4] is a synthetic dataset used for graph classification. Each graph is constructed
based on a random graph generated using the Barabási–Albert (BA) model. It is then
connected to one of two types of motifs: a house motif and a five-node cycle motif. The label
of each graph is determined to belong to one of two classes based on the attached motif.

• ZINC [31] is a database of commercially accessible compounds used for virtual screening. It
contains over 230 million purchasable compounds in a 3D format that can be docked readily.

A.8. Limitations and Societal Impacts

PGIB does not incorporate domain knowledge, so domain-specific information cannot be
conveyed to the extracted subgraph. For example, the extracted key subgraph may not
necessarily correspond to a biologically or chemically existing functional group. It can cause
unrealistic subgraphs to significantly affect the overall training of the model, including prototype
training and final performance.

https://github.com/zaixizhang/ProtGNN
https://github.com/Samyu0304/graph-information-bottleneck-for-Subgraph-Recognition
https://github.com/Samyu0304/Improving-Subgraph-Recognition-with-Variation-Graph-Information-Bottleneck-VGIB-
https://github.com/Graph-COM/GSAT
https://github.com/RexYing/gnn-model-explainer
https://github.com/flyingdoog/PGExplainer


With the advancement and increasing sophistication of explainable artificial intelligence
(XAI), these limitations may have a broader societal impact. There is a potential risk of excessive
dependence on XAI systems, leading to a decrease in human autonomy and decision-making.
Blindly accepting the decisions of AI systems without critically evaluating XAI undermines
human judgment and agency, which can potentially result in inappropriate or harmful behavior.
For example, if a non-existent functional group is unquestioningly accepted from the model, it
can lead to an erroneous understanding of the algorithm as a whole, with incorrect judgment
about the functional group.

A.9. Algorithm

Algorithm 1: Overview of PGIB Training
Input: Training dataset {(𝒢𝑖, 𝑦𝑖)}𝑛𝑖=1, prototype merge epoch 𝑇𝑚, prototype merge period 𝜏 , the

number of prototypes 𝑀 , the number of classes 𝐾 , hyper-parameters of the weights of
the losses 𝛼1, 𝛼2, and 𝛼3

1 for training epochs 𝑡 = 1, 2, . . . , 𝑇 do
2 𝒢𝑠𝑢𝑏 ← argmin𝒢𝑠𝑢𝑏

𝐼(𝒢;𝒢𝑠𝑢𝑏) by injecting noise into subgraph in Eq. 3 // ℒ1
MI

3 Evaluate the loss ℒcon in Eq. 24
4 𝑟𝑚 ← 𝑔(z𝒢𝑠𝑢𝑏

, z𝑚𝒢𝑝
)

5 Minimize −𝐼(𝒢𝑠𝑢𝑏;𝒢𝑝) in Eq. 6 or 7 // ℒ2
MI

6 Evaluate the loss ℒcls = − 1
𝑁

∑︀𝑁
𝑖=1

∑︀𝐾
𝑐=1 I(𝑦𝑖 = 𝑐) log(𝜋𝑐)

7 if Merge = True and 𝑡 > 𝑇𝑚 and 𝑡%𝜏 = 0 then

8 Calculate prototype similarity ℎ(z𝒢𝑖
𝑝
, z𝒢𝑗

𝑝
) =

[︂ ∑︀
𝒢∈𝒳

(𝑔(z𝒢𝑠𝑢𝑏
, z𝒢𝑖

𝑝
)− 𝑔(z𝒢𝑠𝑢𝑏

, z𝒢𝑗
𝑝
))2

]︂−1

9 Perform prototype-merge
10 end
11 Total loss ℒ = ℒcls + 𝛼1ℒ1

MI + 𝛼2ℒ2
MI + 𝛼3ℒcon

12 Update model parameters by gradient descent
13 end
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