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Abstract
Shapley Values (SVs) are concepts used in game theory that have recently found application in Artificial
Intelligence. They are exploited to explain models by quantifying the separate features’ contribution to
the predictor estimates. However, the reliability of the estimated SVs is often not thoroughly assessed. In
this context, we leverage Interval Shapley Values (ISVs) to evaluate the importance and reliability of
features’ contributions when the classifier consists of an ensemble method. This paper presents a suite
of ISVs estimators based on exact estimation, linear regression, and Monte Carlo sampling. In detail, we
adapt classical SVs estimators to ISV-like concepts to efficiently handle real tabular datasets. We also
provide a set of ad hoc performance metrics and visualization techniques that can be used to explore
models’ results under multiple aspects.
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1. Introduction

Shapley Values (SVs), originally formulated in coalition game theory [1], are now widely used to
generate post-hoc explanations for classifiers that assign discrete classes to unlabeled samples.
In detail, SVs quantify the contribution of each input feature to a given classifier’s prediction and,
although they may not always accurately reflect feature importance [2], these contributions can
be estimated on a per-sample basis (locally) or aggregated to provide insights into the overall
behavior of the model (globally) [3].

When a model comprises multiple predictors, estimating the contributions of individual
features becomes challenging, as each feature may influence each predictor differently. In some
cases, certain predictors might entirely disregard features crucial to others. This implies that
the performance provided by the various predictors can vary substantially, directly reflecting on
the contributions made by the various features. Therefore, taking into account the contribution
of each predictor makes the explanations robust to variability in the estimates (see Figure 2).

To model the variability of SVs across multiple predictors, we rely on the concept of Interval
Shapley Values (ISVs) [4]. Derived from the field of cooperative interval games, they can be used
to estimate SVs in the presence of uncertainty by encompassing different predictor outcomes,
which are neglected in standard SVs. To ensure tractable and scalable computation on real data,
we focus on Interval Shapley-Like Values (ISLVs), known to approximate ISVs [5, 6].
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Hereafter, we present a suite of algorithms adapted to explain combinations of predictors with
ISLVs. They indicate the features’ importance for the ensemble method’s outcomes by explicitly
indicating the reliability of such estimates. This is crucial to trust models’ explanations and
compare the outcomes of different estimators. The suite includes approaches to SVs estimation
adapted to handle Interval-based scenarios successfully. Specifically, differently from the neural
approaches proposed in [7], we focus on a linear regressor, a Monte Carlo sampling strategy, and
an Exact estimator, aiming to incorporate all implementations in BONES [8] library. To allow
end-users to explore and compare the outcomes of Interval-based approaches, the suite supports
ad hoc performance metrics, extended from the standard SVs scenario to support interval-level
evaluations. The metrics can be visualized to ease model comparisons and complexity analysis.

The remainder of this paper is organized as follows. Section 2 introduces the preliminary
notions. Section 3 describes the suite of Interval-based approaches. Section 4 shows examples
of outcomes and comparisons. Finally, Section 5 draws the conclusions of the work.

2. Preliminaries

In a cooperative game, the Shapley Value 𝜑𝑖 represents the contribution of a single player 𝑖
to the total payoff of a group of player 𝑃 [9], where 𝜑𝑖 is equal to the sum of the weighted
marginal contributions of 𝑖 to 𝑃 over all possible player’s coalitions 𝑆 ⊆ 𝑃 . Beyond explaining
an individual sample 𝑥, Shapley Values can be leveraged to provide a global explanation of the
dataset by averaging sample-level contributions [10, 11].

Suppose to have the outcome 𝑝𝑟𝑥 of an ensemble M of predictors on a sample 𝑥 with
a confidence interval [𝑝𝑟

𝑥
, 𝑝𝑟𝑥]. In compliance with [4], we define the Coalitional Interval

Game [12, 13] as a pair (𝑤, 𝑆), where 𝑤: 2𝑃 → 𝐼(R)is a function that maps an arbitrary coalition
𝑆 ⊆ 𝑃 to the corresponding confidence interval 𝑤(𝑆): [𝑤(𝑆), 𝑤(𝑆)] = [𝑝𝑟(𝑆), 𝑝𝑟(𝑆)].

To explain ensemble methods we use the concept of Interval Shapley Values (ISVs) [4]
associated with each Coalitional Interval Game (𝑤,𝑃 ) to a payoff vector where each component
is a compact interval of real numbers [14]. In a nutshell, ISVs capture the range of contributions
of a feature 𝑝 by evaluating the interval values across all possible feature combinations. ISVs
have to satisfy two notable properties:

• Partial Subtractor: given two intervals 𝐼 and 𝐽 , the Partial Subtraction 𝐼 − 𝐽 is defined
as [𝐼−𝐽, 𝐼−𝐽 ] only if Δ𝐼 ≥ Δ𝐽 , where Δ is the interval width: 𝐼 = [𝐼, 𝐼] → Δ = 𝐼−𝐼 .

• Size Monotonicity: ISVs can be defined only when the Coalitional Interval Game (𝑤,𝑃 )
is size monotonic, i.e., when Δ𝑤(𝑆) ≤ Δ𝑤(𝑇 ) for all 𝑆, 𝑇 ∈ 2𝑃 with 𝑆 ⊂ 𝑇 .

Since the ISVs constraints are computationally intractable [9, 15], Interval Shapley-Like
Values [15] offer a more efficient yet approximated approach to ISVs estimation. ISLVs adopt the
Moore operators [16], in detail the Moore Subrtractor is used rather than the Partial Subtractor
operator, i.e., given two intervals 𝐼 and 𝐽 the Moore subtraction is defined as 𝐼⊖𝐽 = [𝐼−𝐽, 𝐼−
𝐽 ]. To simplify the estimation [15], the Median and Uncertain-Spread games are introduced:



• Median Game (𝑤𝑚, 𝑃 ): 𝑤𝑚(𝑆) = [
𝑤(𝑆) + 𝑤(𝑆)

2
,
𝑤(𝑆) + 𝑤(𝑆)

2
], 𝑆 ∈ 2𝑃 (1)

• Uncertain-Spread Game (𝑤𝑢, 𝑃 ): 𝑤𝑢(𝑆) = [
−Δ𝑤(𝑆)

2
,
Δ𝑤(𝑆)

2
], 𝑆 ∈ 2𝑃 (2)

Hereafter, we focus on two ISLVs definitions based on the Median and Uncertain-Spread games:

• Improved ISLVs [15]: 𝐼Φ𝐼
𝑖 (𝑤) = Φ𝐼

𝑝(𝑤𝑚)⊕ ΔΦ𝐼
𝑖 (𝑤𝑢)∑︀

𝑝∈𝑃 ΔΦ𝐼
𝑖 (𝑤𝑢)

𝑤𝑢(𝑃 ) (3)

• Reformulated ISLVs [6]: 𝑅Φ𝐼
𝑖 (𝑤) = Φ𝐼

𝑖 (𝑤𝑚)⊕ 1

|𝑃 |
𝑤𝑢(𝑃 ) (4)

where ⊕ is the Moore Addition 𝐼 ⊕ 𝐽 = [𝐼 − 𝐽, 𝐼 − 𝐽 ].

3. Suite of Interval-based Approaches
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Figure 1: Schema of the presented suite

We present a suite of SVs estimators adapted to handle Interval-based estimations on tabular
data. To successfully explain ensembles of predictors, the suite integrates adaptations of existing
algorithms that produce Improved [15] and Reformulated [6] estimates of ISLVs instead of
classical SVs. The suite is available for research at the link: https://github.com/kddwshi/KddHI.

A sketch of the suite is depicted in Figure 1.The black-box model M to be explained consists
of an ensemble of 𝑁 independent predictors, which are all trained on a labeled relational dataset.
For every instance 𝑥 to be classified, each predictor returns its corresponding per-class output
probabilities, which are then used to compute the confidence interval to retrieve an interval
payoff for the ensemble method. As discussed in the Preliminaries, the standard formulations
of both SVs and ISVs involve evaluating model contributions across different subsets of features.
Since most of the existing models do not support holding out subsets of features, similar to [7, 17],
we exploit a surrogate model to approximate the original model considering subsets of features,
thus allowing the subsequent normalization of ISLVs similar to [11, 18].

To adapt traditional SVs-based explainers to ISLVs, we leverage the Median and Uncertain-
Spread games according to the Improved [15] and Reformulated [6] ISLVs formulations.

https://github.com/kddwshi/KddHI


Median game The ISLVs can be expressed as a single value since the characteristic function
𝑤𝑚 is defined as an interval with equal interval endpoints. This approach allows the estimation
to be performed using established methods. Subsequently, the interval can be reconstructed in
the next step when defining the ISLVs.

Uncertain-Spread game Since the minimum and maximum values returned by the char-
acteristic function 𝑤𝑢 are opposites (i.e., same value, opposite sign), the ISLVs estimation can
be simplified by applying the addition operation, rather than the subtraction, upon the single
absolute value. This consideration is exemplified in Equation 5, where the subtraction is recon-
ducted to the addition of the absolute values retrieved from different subsets 𝑆 applied on 𝑤𝑢.

𝑤𝑢(𝑆1, 𝑥) = [−𝑣1, 𝑣1], 𝑤𝑢(𝑆2, 𝑥) = [−𝑣2, 𝑣2]

𝑤𝑢(𝑆1, 𝑥)⊖ 𝑤𝑢(𝑆2, 𝑥) = [−𝑣1 − 𝑣2, 𝑣1 + 𝑣2] = [−(𝑣1 + 𝑣2), 𝑣1 + 𝑣2]
(5)

Therefore, since managing the computation with a single value, we can reconduct the estimation
to the traditional SVs formulation. In this way, classical predictors can be directly exploited to
retrieve the absolute values and, following, to reconstruct the desired Φ𝐼

𝑖 (𝑤𝑢).

Based on the considerations above, we adapt the following algorithms to support ISLVs: the
Exact explainer [11], Unbiased and Biased KernelSHAP [19] and Monte Carlo sampling [20]. For
each algorithm, we separately implement adaptations based on Median and an Uncertain-Spread,
namely the Improved [15] and Reformulated [6] versions.

3.1. Performance metrics

Given the algorithms’ outcomes achieved on a relational dataset, the suite allows the quantitative
evaluation of (1) The accuracy of the intervals estimated by each algorithm against a ground
truth in terms of (a) the 𝐿2 distance between the mean points, or (b) the 𝐿2 distance between
the interval widths, or (c) the Euclidean distance between the intervals [21]. (2) The efficiency
of the estimators in terms of training and inference time. Whenever not otherwise specified, we
use the Exact algorithm adaptation as reference ground truth.

3.2. Outcome visualizations

The suite supports the following graphical visualization of the experimental results achieved
on a test dataset: (1) A bar plot showing the per-feature intervals, which may allow a direct
comparison between different algorithms; (2) A graph plotting the coefficient of variation of
the ISVs (width over mean point), which provides insights into the reliability of the generated
estimated; (3) A plot showing the computational times for model training and inference by
varying the dataset size and dimensionality.

4. Preliminary results

We show examples of outcomes achieved on four relational datasets taken from the UCI reposi-
tory [22] namely Monks, Bank, Wisconsin Breast Cancer, and Diabetes. We explain a Random



Forest Classifier with 100 predictor trees, implemented in the Scikit-learn library [23]. We
generate the confidence interval (with confidence level 𝛾 = 0.95) from the prediction of each
tree. Then, we approximate the predictions of the black-box model using a Multi-Layer Percep-
tron (MLP) as a surrogate model. Similar to [17, 7], MLP consists of three linear layers, each
one with a hidden size of 512 units, interspersed with Rectified Linear Unit (ReLU) activation
functions, and with two final classification heads. The surrogate model was trained for up to 200
epochs using the Kullback-Leibler divergence loss function. The training utilized the AdamW
optimizer [24], with a learning rate of 10−4, a batch size of 8, and a weight decay of 10−2.

Regarding the explainers implementation, the baselines of Median and Uncertain-Spread Exact
explainers are trained on 100 samples. Concerning the Monte Carlo approach, the number
of iterations is set to 1000. For the KernelSHAP-based methodologies, we adopt the marginal
models’ approach as outlined in [25]. Specifically, the Median marginal model was configured
with 20 baseline samples, while the Uncertain-Spread marginal model was allocated 8 baseline
samples. These sample sizes were carefully chosen to strike a balance between achieving
accurate estimations and maintaining computational efficiency. Indeed, higher values lead to
comparable results but with longer times, while lower values, although providing shorter times,
give worse estimates. Moreover, regarding the iteration parameters of the two regression-based
methods, the results are retrieved by testing all datasets with a threshold of 0.1 and a kernel
iteration value of 128.

4.1. Examples of results and visualizations

Table 1
ISLVs Estimators - 𝐿2 Distances on Interval Mean values (𝐿2𝑀 ) and on Interval Withds value (𝐿2𝑊 ).

𝐿2𝑀 𝐿2𝑊 𝐿2𝑀 𝐿2𝑊 𝐿2𝑀 𝐿2𝑊 𝐿2𝑀 𝐿2𝑊

Bank Monks Diabetes WBC

I-UKS 0.049±0.001 0.003±0.001 0.026±0.001 0.019±0.001 0.024±0.001 0.019±0.002 0.028±0.001 0.008±0.001
I-KS 0.050±0.002 0.003±0.001 0.026±0.001 0.021±0.003 0.025±0.002 0.026±0.002 0.034±0.003 0.011±0.001
I-MC 0.076±0.004 0.001±0.001 0.016±0.001 0.036±0.001 0.021±0.001 0.022±0.001 0.034±0.002 0.008±0.001

In this section, we present a comparative analysis of the proposed models based on various
metrics. In detail, the table results are shown as confidence intervals computed on 5 different runs
with a machine equipped with an AMD Ryzen 7950X CPU. Table 1 illustrates the comparison of
ISLVs with respect to the mean point and interval width. The results indicate that the outputs
of Unbiased KernelSHAP and Monte Carlo Sampling best approximate the Exact model, with
Unbiased KernelSHAP yielding superior results in terms of amplitude precision.

Moreover, Table 1 reports the results exclusively for the Improved models (denoted with the
prefix I-), as they share mean points with the Reformulated models (denoted with the prefix R-),
and the interval amplitudes for the latter remain invariant regardless of the approach. Similar
takeaways can be derived from examining the Euclidean distances of the intervals presented in
Table 2, where the Improved and Reformulated approaches yield similar rankings.



Table 2
ISLVs Estimators - Euclidean distances between intervals

R-UKS R-KS R-MC I-UKS I-KS I-MC R-Exact vs I-Exact

Bank 0.0698±0.0005 0.0710±0.0031 0.1073±0.0052 0.0702±0.0005 0.0713±0.0031 0.1074±0.0052 0.0003±0.0001
Monks 0.0371±0.0001 0.0372±0.0003 0.0291±0.0019 0.0393±0.0003 0.0481±0.0025 0.0523±0.0002 0.0001±0.0001

Diabetes 0.0337±0.0008 0.0349±0.0030 0.0292±0.0014 0.0449±0.0022 0.0530±0.0005 0.0446±0.0008 0.0005±0.0001
WBC 0.0396±0.0009 0.0481±0.0041 0.0476±0.0023 0.0434±0.0005 0.0529±0.0043 0.0508±0.0020 0.0005±0.0001

Figure 2 provides a visual insight into the numerical results, i.e., a bar plots and a Coefficient
of Variation plot computed using Unbiased KernelSHAP on the Diabetes dataset. This example
demonstrates how the interval data can be employed to assess the reliability of the Shapley
Values associated with each feature.

Figure 2: Bar Plot and Coefficient of Variation Plot on the Diabetes dataset. Generally, when the
amplitude is substantially larger than the midpoint (e.g., coefficient of variation > 1), the reliability of
the feature estimate should be carefully reconsidered.

4.2. Execution times

Table 3 compares the inference times per sample spent by all analyzed approaches separately
for each tested dataset. The reported statistics show that the Reformulated ISLVs are overall
faster compared to the Improved ones. Moreover, the results show that the Reformulated
regression-based approach outperforms the other ones when the number of features increases.

Table 3
Average inference times for each model and dataset.

N° Features R-Exact R-UKS R-MC I-Exact I-UKS I-MC

Bank 4 0.727±0.118 4.104±0.457 3.687±0.102 1.455±0.218 10.874±2.106 7.374±0.205
Monks 6 0.456±0.047 1.479±0.033 1.818±0.047 0.913±0.085 14.982±0.737 3.635±0.094

Diabetes 8 2.960±0.028 1.936±0.007 2.443±0.022 5.950±0.049 7.022±1.178 4.887±0.044
WBC 9 3.084±0.090 2.148±0.074 2.768±0.069 6.202±0.191 11.808±1.407 5.536±0.137

Summarizing the results, the Reformulated Unbiased KernelSHAP and Monte Carlo ap-
proaches yield comparable outcomes on the distances, with the former being favored for



Improved ISLVs. Furthermore, considering inference times, the Reformulated Unbiased Ker-
nelSHAP method provides the best overall results, especially as the number of features in the
dataset increases.

5. Conclusions and future developments

The paper presented a suite of SVs estimators adapted to explain ensembles of predictors using
ISVs. To estimate both importance and reliability of the features’ contributions to the black-
box model estimates, we adapt three classical SV estimators to handle Intervals of Shapley
Values by leveraging the concepts of Interval Shapley-Like Values. The suite allows researchers
and practitioners to interact with Interval-based approaches and evaluate them using ad hoc
performance metrics and visualizations.

In future work, we plan to investigate approaches not relying on surrogate models, to
analyze new sampling techniques, and, most importantly, to extend this technique to other data
modalities and in multimodal analyses, such as text and images combined.
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