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Abstract
The evaluation of text-to-image generation still lags behind the rapid advancement of generative AI.
Although recent evaluation methods using visual language models (VLMs) have achieved good agreement
with human annotation by predicting a global alignment score, interpretable results are still lacking.
On the other hand, the latest efforts attempt to generate visual language questions based on scene
graphs (SGs) to provide interpretability. However, the number of inferences required by the algorithms is
proportional to the number of nodes and edges in the graph. In this work, we investigate the utilization
of SGs and VLMs to achieve interpretable evaluation results with a constant number of VLM inferences.
The proposed scene graph alignment (SGA) evaluates text-to-image generation from three perspectives:
(1) node alignment; (2) edge alignment; (3) global alignment. The alignment of the nodes and edges is
calculated by embedding-based similarity, and the global alignment is holistically determined by the
VLM. Experiments demonstrate that SGA has a better agreement with human annotation compared to
existing interpretable baselines, while with fewer inferences. Moreover, we also found that assembling
SGA scores and global scores from multiple models could achieve better performance compared to those
strong baselines.
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1. Introduction

Text-to-image generation has advanced rapidly with impressive generation quality. Representa-
tive generative AI models such as DALLE [3] and Stable Diffusion [4], can generate realistic
images following users’ textual input. However, the evaluation of text-to-image generation is
still behind. The widely used embedding-based evaluation [5, 6], lacking interpretability and
more crucially, performs like bag-of-words and is therefore likely to be unreliable [7]. Many
recent studies [8, 9, 10, 2, 1, 11, 12] attempt to improve the evaluation of text-to-image generation
using visual-language models (VLM) [13, 14], due to the better performance of visual-language
representation.

There are two main types: single-score methods and fine-grained methods. Single-score
methods holistically evaluate text-to-image generation, predicting a single score that measures
the alignment between the texts and the generated image. VQAScore [1], as a representative
method of this type, outputs the probability of “Yes” asking if the image aligns with the texts. In
contrast, fine-grained methods focus more on interpretable results. For example, DSG [2] asks
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Figure 1: Evaluation of text-to-image generation utilizing VLMs. Left: direct using VLM to predict
a single score but lack of interpretability, e.g., VQAScore [1]; Middle: using SG of the text to assist
the VLM evaluation but it requires answering for each node and edge, e.g., DSG [2]; Right (Ours):
generating SGs for the text and image separately and align the two SGs by embedding-based similarity.

multiple visual questions, which are generated based on the scene graph that represents the
texts, to verify the existence of every node and edge. Figure 1 illustrates the difference between
these two types of methods.

In general, single-score methods are simpler to use and perform better than fine-grained
methods, i.e., have higher agreement with human annotation, referring to §4 for the detailed
comparison. A fine-grained method usually sacrifices performance and efficiency as it includes
multiple inference steps, which could induce more errors. In addition, it requires much more in-
ferences that are proportional to the number of nodes and edges. Nevertheless, the interpretable
evaluation results remain crucial for fine-grained evaluation needs.

To this end, we investigate a balance that preserves the advantages of the above-mentioned
types of methods. Specifically, we propose a scene graph alignment (SGA) evaluation to provide
both interpretability, and less inferences along with better performance. Scene graph (SG) is a
graph that describes the scene in the image or text, with nodes representing the entities and
edges representing the relation between two entities. By estimating the coverage of the text
SG, the evaluation can be interpretable. For example, we can know whether a specific entity or
relation in the text is correctly generated in the image. Unlike previous fine-grained methods
that verify nodes and edges one by one, SGA generates SG with a single inference and then
aligns the text SG and image SG by embedding-based similarity. By doing so, SGA only requires
a constant number of inferences.

However, generating and aligning SGs for the evaluation of text-to-image generation is still
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non-trivial. Firstly, image usually contains more information than a textual description. This
unbalance makes the generated SGs usually not comparable. In addition, the challenge also
comes from the natural differences in the way information is conveyed between text and images,
which result in discrepancies in the literal expression and graph structure of SGs. We propose
language-conditioned SG generation through language generation by VLMs, and a similarity-
based metric to assess the alignment between text and the generated image, by serializing
nodes and edges into texts and then matching them by textual similarity. Finally, SGA evaluates
text-to-image generation from three perspectives: (1) node alignment; (2) edge alignment; (3)
global alignment. The global alignment is also predicted by the VLM, which can be achieved
directly by editing the prompts as the previous single-score methods do [1].

Experiments show that the proposed SGA predicts alignment scores that correlate well with
human annotation. Compared to the previous fine-grained method, SGA reduces the number
of inferences to a constant, while achieves a better performance, which notably improves
practicability of fine-grained text-to-image generation. Moreover, we also found that assembling
SGA scores and global scores from multiple VLMs could achieve better performance compared
to those strong baselines while maintaining the interpretability.

2. Scene Graph Generation with VLM

As dicsussed in §1, unlike conventional SG generators, we prompt VLMs to achieve generation
of language-conditioned SGs to ensure accurate alignment afterward. This choice is inspired by
the recent advance of large VLMs [13, 15, 16], which shows impressive generalized ability in
most visual language understanding and generation. We generate two separate SGs for the text
and the generated image, respectively. In particular, the language generation paradigm with
VMLs is flexible enough to generate SGs along with other tasks in a single inference with a
proper prompt. For example, we also ask the VLM to directly generate importance scores for
aggregation [17], and a global alignment score [18] while generating the scene graph. We use
gpt-4o-2024-05-131 as the VLM in this work. We manually design the instruction for the
VLM in a zero-shot manner, which provides a template of output to make the results consistent
for the following alignment. Refer to Figure 2 for the prompt of text SG generation and Figure 3
for the prompt of image SG generation.
Language-conditioned SG generation. To generate comparable SGs for text and image,

especially when the image usually contains more information than the text, we propose language-
conditioned SG generation, which is simple but effectively in our task. Specifically, we take
text SG as input to the VLMs to make is understand the context and target when evaluating the
generated image. Refer to the prompt in Figure 3 for details. The analysis with experiments will
be presented in §E.

Importance scores. The VLM is prompted to assign an importance score to every node and
edge in the SG for the text. This importance score is used §3.3 to aggregate all nodes and edges
in an importance-weighed manner [17]. The importance scores are only assigned to the nodes
and edges in the text SG, as the text-to-image evaluation is unidirectional and we only consider
whether the information in the text is well aligned. All importance scores are normalized to

1https://platform.openai.com/docs/models/gpt-4o
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sum up to 1 before being used for weighted aggregation. The effect of the use of importance
scores will be presented in §E.1.
Global alignment score. We also prompt the VLM to predict a global alignment score

between the given text and the image directly, as shown in Figure 3. This score is a direct
evaluation by the VLM model, which is studied as an effective evaluation of text-to-image
alignment [18, 1]. To achieve this, we input the generated SG for text into VLM, i.e., language-
conditioned SG generation. This global score will be used together with the SG alignment scores
to get a balanced overall score in §3.3.

Output example. Figure 4 shows an example of the output of the VLM. The VLM is prompted
to include all the output in a JSON format for the following alignment. In actual implementation
the scene_graph_from_image and alignment_score (global score) are generated together with
one prompt in Figure 3, but scene_graph_from_caption is generated separately with prompt in
Figure 2. In this example, we combine them together for better presentation.

3. Approximate Alignment of Scene Graphs

As demonstrated in Figure 4, existing VLMs are capable of generating SGs that represent texts
or images well via our proposed pipeline. Especially when language-conditioned SG generation
is applied, text SG and image SG are generally comparable. However, the alignment between
two SGs can still be challenging, as we introduced in §1. We propose an approximate alignment
approach to address the above issues, introduced in the following §B (preliminary), §3.1 (node
score), §3.2 (edge score) and §3.3 (overall score).

3.1. Node Alignment Score

Each node in an SG consists of a type and possible multiple attributes. As mentioned above,
directly aligning type names could be inaccurate due to the different literal expressions. Hence,
we calculate the node similarity based two aspects: type name similarity and attribute similarity.
Formally, given a node 𝑛𝑖 = (𝑡𝑖,𝒜𝑖), the set of 𝒜𝑖 consists of multiple pairs of (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒).
We first serialize the attributes by concatenating the type name and all attributive values as
inputs for calculating the attribute similarity:

𝑆𝑒𝑁(𝑛𝑖) = 𝑘𝑒𝑦1, 𝑣𝑎𝑙𝑢𝑒1, ..., 𝑘𝑒𝑦𝑘, 𝑣𝑎𝑙𝑢𝑒𝑘, ..., 𝑘𝑒𝑦|𝒜𝑖|, 𝑣𝑎𝑙𝑢𝑒|𝒜𝑖| (1)

Next, the node alignment score between two nodes can be calculated by:

𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇
𝑖 , 𝑛

𝐼
𝑗 ) =

𝑆𝑖𝑚(𝑡𝑇𝑖 , 𝑡
𝐼
𝑗 ) + 𝑆𝑖𝑚(𝑆𝑒𝑁(𝑛𝑇

𝑖 ), 𝑆𝑒𝑁(𝑛𝐼
𝑗 ))

2
(2)

where 𝑛𝑇
𝑖 ∈ 𝒢𝑇 is the 𝑖𝑡ℎ node in the SG of the text and 𝑛𝐼

𝑗 ∈ 𝒢𝐼 is the 𝑗𝑡ℎ node in the SG
of the image. 𝑆𝑒𝑁 is the function of serialization defined in Equation 1. 𝑆𝑖𝑚 is the textual
similarity function defined in Equation 8.
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3.2. Edge Alignment Score

Similar to the alignment of the nodes, we also serialize the edge to calculate the similarity. Given
a edge 𝑟𝑖 = (𝑛𝑗 , 𝑟𝑙𝑖, 𝑛𝑘), it is serialized as follows:

𝑆𝑒𝑅(𝑟𝑖) = 𝑆𝑒𝑁(𝑛𝑗), 𝑟𝑙𝑖, 𝑆𝑒𝑁(𝑛𝑘); 𝑆𝑒𝑅𝑟𝑒𝑣(𝑟𝑖) = 𝑆𝑒𝑁(𝑛𝑘), 𝑟𝑙𝑖, 𝑆𝑒𝑁(𝑛𝑗) (3)

where 𝑛𝑗 is the source node, 𝑛𝑘 is the target node, and 𝑟𝑙𝑖 is the relationship. 𝑆𝑒𝑁 is the
serialization function for the nodes defined in Equation 1. Note that 𝑆𝑒𝑅 and 𝑆𝑒𝑅𝑟𝑒𝑣 are
distinguished because the edge is unidirectional, and hence the serialization is asymmetric. Next
the alignment score between 𝑟𝑇𝑖 = (𝑛𝑇

𝑗 , 𝑟
𝑇
𝑖 , 𝑛

𝑇
𝑘 ) from the text and 𝑟𝐼𝑖 = (𝑛𝐼

𝑗 , 𝑟
𝐼
𝑖 , 𝑛

𝐼
𝑘) image can

be calculated by:

𝑆𝐺𝐴𝑒𝑑𝑔𝑒(𝑟𝑇𝑖 , 𝑟
𝐼
𝑗 ) =

{︃
𝑆𝑖𝑚(𝑆𝑒𝑅(𝑟𝑇𝑖 ), 𝑆𝑒𝑅𝑟𝑒𝑣(𝑟

𝐼
𝑗 )) if reverse

𝑆𝑖𝑚(𝑆𝑒𝑅(𝑟𝑇𝑖 ), 𝑆𝑒𝑅(𝑟𝐼𝑗 )) else
(4)

reverse means the source and target nodes in the edge should be swapped, when the source
node in the text is more likely to be matched with the target node in the image. Formally, reverse
is True when:

𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇
𝑗 , 𝑛

𝑇
𝑗 ) + 𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇

𝑘 , 𝑛
𝑇
𝑘 ) ≤ 𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇

𝑗 , 𝑛
𝑇
𝑘 ) + 𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇

𝑘 , 𝑛
𝑇
𝑗 )

where 𝑆𝐺𝐴𝑛𝑜𝑑𝑒 is the node similarity function defined in Equation 2. This condition de-
termines whether to swap the source and target nodes in the image graph by comparing the
pairwise similarity between the four nodes. The source and target nodes should be swapped if
the total node similarities are higher after swapping.

3.3. Overall Alignment Score

Nodes and edges matching. The overall alignment score between 𝒢𝒯 and 𝐺𝐼 is a com-
bination of the alignment scores of the nodes and the edges. However, since 𝒢𝒯 and 𝐺𝐼 are
generated separately, it is still difficult to find comparable counterparts to calculate the similarity.
Matching corresponding nodes and edges in the other SG is a prerequisite to aggregate the
scores. Besides, our target is matching nodes and edges with maximum similarity, while the
total number of them could be different in the SGs. Specifically, each node (or edge) in one
SG is matched with a counterpart in another SG, meanwhile the sum of the similarities of
these matched nodes (or edges) is the maximum. This is a standard weighted bipartite graph
matching problem [19], hence we directly use scipy.optimize.linear_sum_assignment
2 to obtain the matching results:

ℳ𝑛𝑜𝑑𝑒(𝑛𝑇
𝑖 ) = 𝑛𝐼

𝑗 ∈ 𝒩 𝐼 ; ℳ𝑒𝑑𝑔𝑒(𝑟𝑇𝑖 ) = 𝑟𝐼𝑗 ∈ ℛ𝐼 (5)

The cost matrix required, i.e., pair-wise similarities, for this problem can be calculated by our
proposed alignment scoring function in Equation 1 and Equation 3.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
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Aggregation and the overall SGAScore. After obtaining the matching results, for each
node 𝑛𝑇

𝑖 ∈ 𝒩 𝑇 in the text SG, we sum up the alignment score of the node with its matching
node in the image to calculate the aggregated scores. The aggregation for the edge alignment
scores is the same. Combined with the global alignment score, the final overall alignment score
can be calculated as:

𝑆𝐺𝐴𝑓𝑔 =
∑︁

𝑛𝑇
𝑖 ∈𝒩 𝐼

𝑆𝐺𝐴𝑛𝑜𝑑𝑒(𝑛𝑇
𝑖 ,ℳ𝑛𝑜𝑑𝑒(𝑛𝑇

𝑖 )) * 𝑤𝑛𝑜𝑑𝑒
𝑖

+
∑︁

𝑟𝑇𝑖 ∈ℛ𝐼

𝑆𝐺𝐴𝑒𝑑𝑔𝑒(𝑟𝑇𝑖 ,ℳ𝑒𝑑𝑔𝑒(𝑟𝑇𝑖 )) * 𝑤
𝑒𝑑𝑔𝑒
𝑖

(6)

𝑆𝐺𝐴𝑆𝑐𝑜𝑟𝑒 =
2× 𝑆𝐺𝐴𝑓𝑔 × 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙

𝑆𝐺𝐴𝑓𝑔 + 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙
(7)

where 𝑆𝐺𝐴𝑓𝑔 indicate the fine-grained score that is the average of weighted node similarities
and edge similarities. 𝑤𝑛𝑜𝑑𝑒

𝑖 and 𝑤𝑒𝑑𝑔𝑒
𝑖 are the importance scores predicted by the VLM, as

introduced in §2, which are assigned to each node and edge in 𝐺𝑇 for weighted aggregation.
𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙 is the VLM-based score that directly assesses the alignment between text and image,
introduced in §2. Finally as defined in Equation 7, the 𝑆𝐺𝐴𝑆𝑐𝑜𝑟𝑒 is the harmonic mean of
𝑆𝐺𝐴𝑓𝑔 and 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙 to achieve a balance for the evaluation of text-to-image generation.

4. Evaluation and Discussion

4.1. SGA Scores Correlates Well to Human Annotation

Table 1 demonstrates the experimental results on TIFA160 and Pick-a-Pic. SGA is compared
with baselines with three different levels of interpretability: fine-grained, single-score with or
without textual reasoning process. Refer to §D for the details of baselines.

SGA performs competitively with fine-grained baselines and single-score baseline
with textual interpretability. According to the results, SGA achieves a competitive level of
agreement with human, compared to fine-grained baselines: TIFA and DSG. SGA outperforms
the baselines in pairwise accuracy, Pearson coefficient on TIFA160, and accuracy on Pick-a-Pic.
As for interpretability, these fine-grained baselines provide divided questions that verify specific
entities and relationships, which can also be measured by the node and edge scores from our
SGA. On the other hand, for single-score baselines with reasoning process by VLMs, such
as VIEScore and GPT4V-Eval, the performance are generally competitive. SGA performs the
best in pairwise accuracy on TIFA160, GPT4V-Eval performs the best in Pearson and Kendall
coefficients, and VIEScore outperforms the others on Pick-a-Pic, while differences are not
significant. GPT4V-Eval and VIEScore share a very similar idea of asking the VLM, such as
GPT4V, to evaluate the alignment between the text and the generated image by outputting a
single score. Along with the score, the reasoning process of the VLM is also available. The
interpretability is still limited as there is no structure in the textural reasoning process, which
could be harder to interpret than divided questions or graph-based similarities.
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Method Interpretability
# of VLM
inferences

TIFA 160 Pick-a-
Pic

Acc. 𝜌 𝜏 Acc.
Fine-grained baselines
TIFA [20] Divided Questions N* 60.4 49.3 38.1 -
DSG [2] Divided Questions N* 54.3 55.6 45.4 70.0
SGAScore (Ours) Graph-based 2 64.5 58.2 40.5 76.0
Single-score baselines, w/ reasoning process by VLMs
VIEScore [18] Textual 1 63.9 61.2 47.4 78.0
GPT4V-Eval [21] Textual 1 64.0 58.9 46.8 74.0
SGAScore (Ours) Graph-based 2 64.5 58.2 40.5 76.0
Single-score baselines
CLIPScore [5] None 1 55.8 29.6 19.9 76.0
BLIPv2Score [22] None 1 57.5 35.6 23.3 80.0
VQAScore [1] None 1 71.2 66.2 51.9 84.0
VQAScore (Re-run) None 1 71.5 66.4 52.6 83.0
SGAScore (Ours) Graph-based 2 64.5 58.2 40.5 76.0

Table 1
The comparison of evaluation performance. The Pairwise Acc. / Pearson 𝜌 / Kendall 𝜏 are reported.
Higher scores are better. Part of the results except ours are from [1], which is also the basic of our
evaluation programs. *: N is the number of questions that verifies every entites and relationships
mentioned in the text, refer to §D for details.

SGA underperforms VQAScore. SGA outperforms embedding-based metrics CLIPScore
and BLIPScore. However, the strongest baseline VQAScore [1] outperforms SGAScore by a clear
margin. VQAScore is achieved by training a bidirectional VQA model and take the likelihood as
the score, which is simple and well correlated to human judgement, but without interpretability.
It should be harder to improve fine-grained methods than single-score ones, as the methods
are usually more sophisticated. Hence it is difficult to control the accuracy of each step, e.g.,
question generation, scene graph generation, or question answering.

5. Conclusion

In this work, we investigate the utilization of VLM along with SGs, to propose a fine-grained
evaluation method for text-to-image generation. Our proposed scene graph alignment score
(SGAScore) generates SGs for the text and image separately and aligns them using embedding-
based similarity in an approximate manner. By doing so, SGAScore can provide interpretable
evaluation results with only two inferences by VLM, making it an alternative to existing
fine-grained baselines that usually generate and answer multiple divided visual questions.
Experiments and analysis demonstrate that SGAScore achieves a competitive level of agreement
with human annotation. However, although fine-grained methods have an advantage due to
interpretable evaluation, single-score baselines still outperform fine-grained methods, including
the proposed SGAScore.
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A. Related Work

A.1. Evaluation of Text-to-image Generation

Current automatic evaluation for text-to-image generation can be approximately classified
into two types: single-score methods and fine-grained methods. Single-score methods such
as CLIPScore [5] and BLIPScore [6] calculate embedding-based similarity between text and
generated image. Those metrics behave like bag-of-words [7] and is therefore likely to be
unreliable in complex scenarios. More recent studies utilize VLMs to further improve the
evaluation, such as VQAScore [1] and VIEScore [18], which input text and image into the VLM
and obtain a overall score. Fine-grained methods focus more on interpretable results. DSG [2],
as a representative work of this type, generates visual language questions for every node and
edge in the SG generated by the text. DSG verifies fine-grained elements but requires inferences
for every question, and performance is worse than most single-score metrics. In addition, there
are also metrics such as ImageReward [11], PickScore [12], and HPSv2 [9] that rely on human
evaluators. Although these methods provide valuable insights, they are often expensive and
difficult to reproduce. Hence, this line of work is out of the scope in this work.

A.2. SG Generation and Alignment

SG generation is an important area for learning visual-language knowledge. It generates
graphs where each object is a node, and the relationships between objects are the edges, thus
generating SGs can represent images at a detailed level and bridge the gap between images and
semantics. Starting from the work by Lu et al. [23] and Visual Genome [24], most SG generation
methods follow the pipeline of object, relationship, and attribute detection. For example, Neural
Motifs [25] leverages global context and motifs to improve SG generation by integrating vision
and language effectively. Graph R-CNN [26] employs region proposal network to accurately
identify relationships between objects. Tang et al. [27] propose SGDet and unifies the evaluation
of SG generation. In our work, we use SG as a structural representation of the text and image,
to achieve interpretable evaluation of text-to-image generation.

SG alignment, as a sub-goal in this work, measures whether the entities and relationships
in the text are well generated in the image. This could be challenging, as the structure of the
SG and the literal expression of the nodes and edges varies, which means that there could be
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multiple correct SGs for an identical image. As a result, conventional SG evaluation generally
uses the top-K recall [27] as the metric so that the most correct predictions can be counted. A
related task is multimodal knowledge graph alignment; recent methods [28, 29, 30] typically
require to learn a common embedding space for all modalities, where similar entities in the
knowledge graph have similar embeddings. In this work, we propose to serialize nodes and
edges and calculate embedding-based similarity, as above-mentioned solutions are not practical
due to the requirement of efficiency and open-domain semantics.

Text Scene Graph Generation  
Given a caption {TEXT} that describes an image, generate a scene graph for this caption. Follow these guidelines:

1.Text-Based Scene Graph:
Identify key entities (objects) and their attributes (properties) mentioned in the text.
Structure nodes (entities) and edges (relationships) based on described interactions and spatial relationships.
Assign an importance score to each node and edge based on their relevance in the text.

2.Output Format:
Output the scene graph in JSON format with nodes and edges clearly defined.
Output the thoughts and reasoning behind the scene graph generation process. Note that the scene graph will be used for later 
alignment analysis with an image-based scene graph.

3.Example Output Structure:
{
  "scene_graph_from_caption": {
 "thoughts": "entity_type_1 was detected as it was mentioned in the text. attribute_1 was excluded as it was too abstract 

 to be used for later alignment analysis.",
    "nodes": [
      {“Id”: 1, “type”: “entity_type_1”, “attributes”, {“attribute_1”: “value_1”}, "importance_score": 0.9},
      {“id”: 2, “type”: “entity_type_2”, “attributes”: {“attribute_2”: “value_2”}, “importance_score”: 0.8},
      {"id": 3, "type": "entity_type_3", "attributes": {}, "importance_score": 0.6}
    ],
    "edges": [
      {"source": 1, "target": 2, "relationship": "relationship_type_1", "importance_score": 0.7},
      {"source": 1, "target": 3, "relationship": "relationship_type_2", "importance_score": 0.5}
    ]
  }
}

Important Notes:
Ensure all mentioned entities and their relationships are accurately identified and described.
Assign appropriate importance scores based on relevance in the text.
Do not include additional text or explanations in the output.

Figure 2: Text Scene Graph Generation

B. Preliminary

Task definition. The text SG and image SG are defined as 𝒢𝑇 and 𝒢𝐼 , respectively. A graph 𝒢
consists of a pair set of (𝒩 ,ℛ) with nodes 𝒩 and edges ℛ. Each node 𝑛𝑖 ∈ 𝒩 contains a type
name 𝑡𝑖 and a set of attributes 𝒜𝑖, i.e., 𝑛𝑖 = (𝑡𝑖,𝒜𝑖). Each edge 𝑟𝑖 ∈ ℛ contains two nodes and a
relation, i.e., 𝑟𝑖 = (𝑛𝑗 , 𝑟𝑙𝑖, 𝑛𝑘). Our goal is to calculate the alignment score 𝑆𝐺𝐴𝑆𝑐𝑜𝑟𝑒(𝒢𝑇 ,𝒢𝐼),
which is defined as a unidirectional score that measures how much of the information in the text
is covered in the image. Note that we should only consider the unidirectional completeness of
the text because the information contained in the image is usually more than that in the text.

Textual similarity on serialized nodes and edges. As the SGs of text and image are
generated separately, leading to potential differences in structures and literal expression, we
serialize the edges and nodes to calculate the textual similarity for measuring the semantic
alignment. Serialization of nodes and edges will be introduced in §3.1 and §3.2, respectively.
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Then we calculate the similarity using a textual embedding model. Text embedding models[31,
32, 33, 34, 35] encode texts into dense vectors. Semantic similarity can be easily obtained by
calculating the cosine distance between the vectors. We use qiyuw/pcl-roberta-base3 as
the embedding model in this work. All settings are kept as the default introduced in the original
PCL paper [32]. Formally, the similarity between serialized nodes or between serialized edges
can be calculated as:

𝑆𝑖𝑚(·, ·) ∈ [0, 1] (8)

C. Benchmarks and Metrics

Benchmarks. Following previous studies [2, 1], we evaluate the performance of text-to-image
evaluator by assessing its agreement with human annotation. The following benchmarks are
chosen:

• TIFA160 [20] contains 160 text prompts from four sources: MSCOCO captions [36],
DrawBench [37], PartiPrompts [38], and PaintSkill [39]. Each prompt is input into five
text-to-image models, generating 800 image-text pairs. Additionally, these pairs are
labeled using a 1-5 Likert scale for human evaluation in the DSG paper [2], which is used
in this work for assessing the agreement with human.

• Pick-a-Pic [12] is a dataset including labels of human preference for text-to-image
generative models. We use a clean subset selected by Lin et al. [1], as the original dataset
contains many improper contents and incorrect labels. The selected dataset contains 100
prompts for 200 generated images for binary accuracy.

Metrics. We use classical Pearson and Kendall coefficients to assess the agreement with
the human annotation. The benchmarks provide human annotation such as 1-5 Likert scale
for each text-image pairs, these coefficients measure the correlation between the human and
model judgements. In particular, as advocated by Deutsch et al. [40] and Lin et al. [1], pairwise
accuracy is a more reliable metric to assess the model’s agreement with human. Specifically,
the pairwise accuracy determines whether the model and human agree with pairwise ranking
for each text-image pair scores, higher, lower, or ties to another text-image pair. Refer to the
original papers [40, 1] for a detailed analysis. In this work, we use pairwise accuracy as the
main metric for assessing the evaluator.

D. Baselines

We category baselines into single-score methods and fine-grained methods for fair comparison
in the following sections. For baselines, we follow the implementation in the original papers,
e.g., the prompts for the VLMs. We fix the random seed as 42. The evaluation program is
implemented based on the codebase4 of VQAScore [1].

3https://huggingface.co/qiyuw/pcl-roberta-base
4https://github.com/linzhiqiu/t2v_metrics
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Single-score baselines. Single-score methods holistically evaluate the generated image,
i.e., giving an overall score directly. We choose two widely used baselines of CLIPScore [5],
BLIPScore [22] in this category. These embedding-based methods encode text and image into a
shared space and calculate the distance as the score. Another strong baseline is VQAScore [1],
instead of encoding text and image into embeddings, it achieves this in a visual question-answer
manner, i.e. asking a VLM to answer whether the generated image represents the information
in the text. The probability of generating “Yes” is taken as the score. Most single-score methods
are not interpretable in nature, except VIEScore [18] and GPT4V-Eval [21], which generate an
explanation along with a textual score by VLMs such as GPT-4V. Single-score baselines are easy
to use and generally perform well in terms of human agreement, however, the interpretability
is lacked or limited.

Fine-grained baselines. Fine-grained methods divide the evaluation into multiple steps,
e.g. visual questions. By answering those fine-grained questions, the method can provide
interpretable results, including the specific existence of entities or relationships. For example,
TIFA [20] generates multiple questions for the text by an LLM, e.g., “Is there a moon?”, and
returns the accuracy of answering all the questions by VLMs as the score. More relevant to our
work, DSG [2] has a similar pipeline but constrains the generation of questions with SG, to
obtain more reasonable questions and question-answer logic. As the pipeline includes multiple
questions generation and answering, these fine-grained methods usually scarify the accuracy
of agreement with human annotation. Nevertheless, the interpretable results could provide
insight into the evaluation, making these baselines another important line of work.

E. Implementation Analysis

Before comparing it with previous works, we investigate the best practice of SGA in this section.
There are two implementation decisions to make: the SG generation model and the use of
language-conditioned SG generation. The decision will be discussed in the following paragraphs.
As conventional SG generators are not capable of generating a global score and importance
scores as VLMs, we calculate the fine-grained score 𝑆𝐺𝐴𝑓𝑔 defined in Equation 6 and do not
use importance scores, i.e., averaging the scores of nodes and edges, for a fair comparison in
this section.

Choice of SG generation model. VLMs are flexible in generating SGs along with other
tasks in a single inference, such as predicting a global alignment score or giving a reasoning
process, as we argued in §2. Even so, it is still necessary to study the use of conventional SG
generators for both text and image, because our proposed approximate alignment is applicable
to any other SG generator. Hence, we conduct an evaluation of different combinations of SG
generators. For text SG, we use SGParser5 provided by Wu et al. [41]. SGParser takes a single
sentence and parses it into a SG. For image SG, we choose the widely used SGDet [27]6, which
takes a single image and outputs an SG. For SGDet and SGParser, we use the default settings.

5https://github.com/vacancy/SceneGraphParser
6https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
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The performance of different SG generators on TIFA160 is shown in Table 2. It can be observed
that language-conditioned GPT-4o generally performs better than SGDet as the image SG
generator. The possible reason is the capability of GPT-4o to conduct the language-conditioned
SG generator, which can mitigate the imbalanced amount of information for text and image. In
contrast, the performance of SGParser and GPT-4o is comparable to that of the text SG generator.
It can be expected that the SG generation for a relatively short sentence is easier than that for
image, and traditional parser should perform well on this task. As a result, we choose GPT-4o
as image SG generator and SGParser as text SG generator for SGA. The reason we choose
SGParser as it is much easier and faster than GPT-4o, given the comparable performance.

Effect of language-conditioned SG generation. To further verify the necessity of language-
conditioned generation, we evaluate the performance of GPT-4o without text SG as input, i.e.,
only input the image into GPT-4o and prompt it to generate SG. Refer to §2 for detailed
implementation of this. The results are in Table2. It shows that no matter whether using
SGParser or GPT-4o as text SG generator, the performance will drop largely. This indicates
that language-conditioned SG generation is essential when applying SGA for the evaluation of
text-to-image generation.

Image SG Generator
Text SG Generator

SGParser [41] GPT-4o
SGDet [27] 53.4/12.5/14.9 47.6/3.0/2.9
GPT-4o w/o language-conditioned 53.3/21.0/14.8 53.6/20.8/15.3
GPT-4o w/ language conditioned 60.5/42.1/30.1 60.3/43.6/32.1

Table 2
Comparing different combinations of SG generators on TIFA160. The Pairwise Acc. / Pearson 𝜌 / Kendall
𝜏 are reported, in which Pairwise Acc. is the main metric as we discussed in §C. Higher scores are better.

E.1. Detailed Analysis

The balance between fine-grained and global scores. In Equation 7 we combine the
fine-grained score 𝑆𝐺𝐴𝑓𝑔 and global score 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙 by harmonic mean. To further investigate
the balance between the fine-grained and global scores, we set a hyperparameter 𝛽, to assess
the effects of different values of 𝛽 on the combined performance of 𝑆𝐺𝐴𝑓𝑔 and 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙 by
adjusting their ratios. Formally, we calculate 𝑆𝐺𝐴𝛽 as follows,

𝑆𝐺𝐴𝛽 = (1− 𝛽)× 𝑆𝐺𝐴𝑓𝑔 + 𝛽 × 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙 (9)

Figure 5 shows the performance of 𝑆𝐺𝐴𝛽 when varying the value of 𝛽. The best 𝛽 is between
0.5 and 0.9, and neither removal of 𝑆𝐺𝐴𝑓𝑔 nor 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙, that is, when 𝛽 is 1.0 or 0.0, can
lead to a significant drop in all metrics. The phenomenon suggests that fine-grained and global
score evaluate text-to-image from different perspectives, and the combination of them is overall
helpful. Moreover, 𝑆𝐺𝐴𝑆𝑐𝑜𝑟𝑒 defined in Equation 7, which is the harmonic mean of 𝑆𝐺𝐴𝑓𝑔

and 𝑆𝐺𝐴𝑔𝑙𝑜𝑏𝑎𝑙, still performs the best no matter the value of 𝑏𝑒𝑡𝑎. Consequently, the simple
but effective harmonic mean is recommended to achieve the balance between fine-grained and
global evaluation in practice.
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Ablation study Table 3 demonstrates the ablation study of different components of SGAScore.
We first evaluate the performance when removing the use of importance scores defined in §2.
Surprisingly, the performance does not drop significantly after removing importance scores,
which indicates that simply averaging all entities and relationships mentioned in the text is
how humans make judgements. In addition, we evaluate the performance of single scores in
SGAScore. The results show that the global score performs relatively well, but the performance
still drops by 9.9 in pairwise accuracy. In contrast, if we only use node or edge similarity,
the performance drops largely. On the other hand, we also evaluate the performance when
removing the each score, and observe that removing global score will greatly degrade the
performance, and the degradation is narrower when removing node or edge scores. Overall, the
results indicate that all three types of scores are important for SGAScore. Edge and node scores
are useful not only for interpretability but also for the agreement with human annotation. In
particular, the global score seems to be more essential as it can solely perform well and the
removal of it leads to larger degradation. The possible reason is that the global score evaluates
the generated image from a global perspective, which is a strong complement to the fine-grained
scores.

Method Pearson Kendall Acc.
SGAScore 58.2 40.5 64.5

-w/o Importance Score 58.1 ↓ 0.1 40.5 ↓ 0 64.5 ↓ 0

-Only Node Score 44.5 ↓ 13.7 30.7 ↓ 9.8 58.4 ↓ 6.1

-Only Edges Score 38.4 ↓ 19.8 30.3 ↓ 10.2 59.9 ↓ 4.6

-Only Global Score 57.5 ↓ 0.7 44.9 ↑ 4.4 54.6 ↓ 9.9

-w/o Nodes 56.1 ↓ 2.1 39.5 ↓ 1.0 64.1 ↓ 0.4

-w/o Edges 57.0 ↓ 1.2 39.5 ↓ 1.0 63.1 ↓ 1.4

-w/o Global Score 44.4 ↓ 13.8 32.5 ↓ 8.0 60.6 ↓ 3.9

Table 3
Ablation study of SGA. The Pairwise Acc. / Pearson 𝜌 / Kendall 𝜏 on TIFA160 are reported. Higher scores
are better.

F. Composite score of SGAScore and VQAScore.

Although fine-grained methods performs worse than VQAScore, we hypothesize that fine-
grained methods and single-score methods evaluate text-to-image generation from different
perspectives implicitly. Accordingly, we attempt to combine SGAScore and VQAScore and
achieve a better performance than VQAScore. Figure 6 shows the performance of composite
score with varying ratio of SGAScore and VQAScore. The optimal performance occurs when
SGAScore and VQAScore are combined in a 3:7 ratio, which is reported in Table 1. Besides,
when the ration is between 5:5 and 9:1, the composite score can perform competitively with
VQAScore. This is a minor but interesting finding, but we want to note that it should be used
with caution in practice, as it makes the composition of the score more complex and possibly
weakens the interpretability.
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Given an image, generate a scene graph from the image. Your task is to evaluate the quality of the 
image generation by creating a scene graph based on the image content. Do not intentionally 
generate results that match the text. Instead, focus on accurately detecting and describing all 
objects, their attributes, and relationships in the image.

1.Step-by-Step Process:
Identify each entity or relationship in the image. For every entity or relationship in the 
following caption-based scene graph, evaluate its visibility and clarity in the image, and decide 
whether to include it in the output scene graph. If an entity or relationship is not perfectly 
visible in the image, exclude it from the output scene graph.

Caption-based scene graph:
{TEXT_SCENE_GRAPH}

In addition, evaluate the overall alignment degree between the image and the caption, and output 
an alignment score.

2.Output Format:
Output the scene graph in JSON format with nodes and edges clearly defined.
Output the thoughts and reasoning behind the scene graph generation process. Note that your task 
is to evaluate the quality of image by generating a scene graph from it. Do not intentionally 
generate results that match the text. Instead, focus on accurately detecting and describing all 
objects, their attributes, and relationships in the image.
Each node and edge should include a source indicator (image) and have corresponding identifiers 
where matches are suspected.
Output a score between 1-5 to determine the degree of alignment between the image-based and 
caption-based scene graphs.

Example Output Structure:
{
  "thoughts": "To generate a scene graph from an image, I start by identifying all distinguishable 

 objects and their attributes. In this image, I see [Entity1] with [Attribute1] and [Entity2] 
 with [Attribute2]. There is also a blurry shape that might be [Entity3], but its features are 
 not clear enough to be included. I then evaluate the visibility and clarity of these elements, 
 ensuring that only perfectly visible objects and relationships are included. Since the blurry 
 shape isn't distinct, it is excluded from the scene graph. I construct the scene graph by  
 representing each object as a node with its attributes and each relationship as an edge    
 connecting the nodes. Next, I compare the image-based scene graph with a caption-based scene 
 graph, looking for matches and discrepancies. For instance, if the caption describes [Entity1] 
 with [Attribute1] next to [Entity2] with [Attribute2], but also mentions [Entity3], which   
 isn’t clearly visible in the image, the alignment would be lower. I assign an alignment   
 score based on how well the two graphs match, with a score of 2 indicating fair alignment due 
 to some discrepancies.",

  "scene_graph_from_image": {
    "nodes": [
      {"id": 1, "type": "entity_type_1", "attributes": {"attribute_1": "value_1"}},
      {"id": 3, "type": "entity_type_3", "attributes": {}}
    ],
    "edges": [
      {"source": 1, "target": 3, "relationship": "relationship_type_2"}
    ]
  }
  "alignment_score": 4
}

Important Notes:
If the information is not clearly visible or is too abstract in the image, it should be considered 
not visible.
Ensure the generated scene graph is based solely on the image content, the caption-based scene 
graph is just for alignment the textual description.
Assign a score between 1-5 to indicate the degree of alignment between the image-based and 
caption-based scene graphs (1: poor alignment, 5: perfect alignment).

Image Scene Graph Generation  

Figure 3: Image Scene Graph Generation
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{
  "thoughts": "Entity 'man' was detected as it was mentioned in the text. Attribute 'green 

suit' was included as it provides specific information about the man. Entity 'laptop' was 
also detected as it is explicitly mentioned. The relationship 'leaning over' between 'man’ 
and 'laptop' was identified as it describes their spatial interaction.",

  "scene_graph_from_caption": {
    "nodes": [
      {“id”: 1, “type”: “man”, “attributes”, {“suit_color”: “green”}, "importance_score": 0.9},
      {“id”: 2, “type”: “laptop”, “attributes”: {}, “importance_score”: 0.8}
 ],
    "edges": [
      {"source": 1, "target": 2, "relationship": ” leaning over", "importance_score": 0.7},
 ]
  }
}

“A man in a green suit leaning over a laptop”

{
"thoughts": "To generate a scene graph from this image, I start by identifying distinguishable 
objects and their attributes. In this image, I see a man wearing a green shirt and using a 
laptop. There is no ambiguity in the main entities and their attributes, as both the man and 
the laptop are clearly visible. There are no additional objects or blurry elements that could 
lead to confusion. I then represent each object as a node with its attributes, and each 
relationship as an edge connecting the nodes. Next, I compare the image-based scene graph 
with the caption-based scene graph. Both the entities (man and laptop) and their relationship 
(leaning over) are clear in both the image and caption, resulting in high alignment. 
Therefore, I assign a high alignment score. The overall image quality is also high, with 
good lighting and detail, resulting in a high-quality score.",

  "scene_graph_from_image": {
 "nodes": [
  {"id": 1, "type": "man", "attributes": {"shirt_color": "green"}},
  {"id": 2, "type": "laptop", "attributes": {}}
 ],
 "edges": [
  {"source": 1, "target": 2, "relationship": "using"}
 ]
  },
  "alignment_score": 5
}

Figure 4: An example of language-conditioned SG generation with the VLM. The example is from from
TIFA160 [2], in which the image is generated by stable-diffusion-v1-5.
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Figure 5: Analysis on the ratio between fine-grained score and global scores. The x-axis is value of 𝛽
introduced in Equation 9, which means the proportion of the global score when calculating the overall
score. The dotted lines are performance of SGAScore, which is calculated by harmonic mean. The y-axis
are metrics measuring the evaluation performance. The Pairwise Acc. / Pearson 𝜌 / Kendall 𝜏 on TIFA160
are reported. Higher scores are better.
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Figure 6: Analysis on the combination of SGAScore and VQAScore. The dotted lines are performance
of VQAScore. The x-axis is the ratio of SGAScore to VQAScore. The y-axis are metrics measuring the
evaluation performance. The Pairwise Acc. / Pearson 𝜌 / Kendall 𝜏 on TIFA160 are reported. Higher
scores are better.
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